Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 物理 热力学 功率(物理) 量子力学 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黄悦完成签到,获得积分10
刚刚
科研通AI2S应助干雅柏采纳,获得10
刚刚
pipi发布了新的文献求助10
1秒前
彭于晏应助孙翘楚采纳,获得10
1秒前
香蕉觅云应助称心的雁兰采纳,获得10
1秒前
方源发布了新的文献求助10
2秒前
彭于晏应助真实的小伙采纳,获得10
3秒前
FashionBoy应助RuiXxxxx采纳,获得10
3秒前
冬嘉发布了新的文献求助30
3秒前
ziwei完成签到,获得积分10
4秒前
5秒前
Owen应助李雅倩采纳,获得10
5秒前
5秒前
孤独安萱完成签到,获得积分10
5秒前
呆毛发布了新的文献求助10
6秒前
汉堡包应助暗夜萝莉采纳,获得10
6秒前
pupupu发布了新的文献求助10
6秒前
一碗鱼发布了新的文献求助10
6秒前
11发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
youuuu发布了新的文献求助20
7秒前
十二完成签到,获得积分10
7秒前
桐桐应助宁霸采纳,获得10
7秒前
ZJH发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
ira完成签到,获得积分10
8秒前
斯文败类应助YuJianQiao采纳,获得10
8秒前
曾权发布了新的文献求助10
9秒前
9秒前
学不可以已发布了新的文献求助300
10秒前
10秒前
11秒前
可爱的函函应助Lily采纳,获得10
11秒前
干雅柏发布了新的文献求助10
11秒前
11秒前
田田田田完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474540
求助须知:如何正确求助?哪些是违规求助? 4576297
关于积分的说明 14357649
捐赠科研通 4504297
什么是DOI,文献DOI怎么找? 2468108
邀请新用户注册赠送积分活动 1455746
关于科研通互助平台的介绍 1429693