Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 物理 热力学 功率(物理) 量子力学 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cai完成签到 ,获得积分10
刚刚
天天快乐应助斑马不一般采纳,获得10
1秒前
1秒前
1秒前
1秒前
keyan完成签到,获得积分10
2秒前
芦同学完成签到,获得积分10
3秒前
3秒前
3秒前
大模型应助姜友舜采纳,获得10
3秒前
开朗艳一发布了新的文献求助10
4秒前
4秒前
5秒前
在水一方应助Cassiopiea19采纳,获得10
5秒前
动听的康乃馨完成签到,获得积分20
5秒前
Lau发布了新的文献求助10
6秒前
6秒前
6秒前
lxcy0612完成签到,获得积分10
6秒前
不争馒头争口气完成签到,获得积分10
7秒前
zhzhzh完成签到,获得积分10
8秒前
瓜老师完成签到,获得积分20
8秒前
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
嘿嘿应助科研通管家采纳,获得10
8秒前
风中冰香应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
舒敏关注了科研通微信公众号
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
LJC完成签到,获得积分10
8秒前
李健应助科研通管家采纳,获得10
9秒前
Hello应助开朗艳一采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
风中冰香应助科研通管家采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525344
求助须知:如何正确求助?哪些是违规求助? 4615587
关于积分的说明 14549232
捐赠科研通 4553605
什么是DOI,文献DOI怎么找? 2495428
邀请新用户注册赠送积分活动 1475975
关于科研通互助平台的介绍 1447716