Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 物理 热力学 功率(物理) 量子力学 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小明明发布了新的文献求助10
刚刚
1秒前
请叫我鬼才完成签到,获得积分10
1秒前
2秒前
小二郎应助Wonder采纳,获得10
2秒前
2秒前
HY完成签到,获得积分10
2秒前
Jasper应助sugar采纳,获得10
3秒前
3秒前
白桦林泪发布了新的文献求助10
3秒前
3秒前
星辰大海应助ty7889采纳,获得20
4秒前
席以亦完成签到,获得积分10
4秒前
快乐难敌发布了新的文献求助10
4秒前
希望天下0贩的0应助山君采纳,获得10
4秒前
5秒前
5秒前
安菲尔德完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
WAO驳回了李健应助
6秒前
6秒前
HY发布了新的文献求助10
8秒前
9秒前
9秒前
小哥发布了新的文献求助10
9秒前
madcatalysis发布了新的文献求助20
9秒前
咸鱼好闲完成签到 ,获得积分10
10秒前
10秒前
害羞夏兰发布了新的文献求助10
10秒前
大Doctor陈发布了新的文献求助10
10秒前
这就去学习完成签到,获得积分10
11秒前
11秒前
12秒前
gr发布了新的文献求助30
12秒前
momo完成签到,获得积分10
13秒前
彭于晏应助白桦林泪采纳,获得10
14秒前
15秒前
mmccc1发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600811
求助须知:如何正确求助?哪些是违规求助? 4010804
关于积分的说明 12417574
捐赠科研通 3690690
什么是DOI,文献DOI怎么找? 2034531
邀请新用户注册赠送积分活动 1067930
科研通“疑难数据库(出版商)”最低求助积分说明 952602