Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 物理 热力学 功率(物理) 量子力学 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhou完成签到,获得积分10
刚刚
刚刚
刚刚
kendrick677发布了新的文献求助10
刚刚
ccc完成签到,获得积分10
刚刚
1秒前
詹严青完成签到,获得积分10
1秒前
赘婿应助qcrcherry采纳,获得10
1秒前
yusong发布了新的文献求助10
1秒前
1秒前
bjbmtxy应助niko采纳,获得10
1秒前
小巧吐司完成签到,获得积分10
1秒前
SciGPT应助niko采纳,获得10
1秒前
赘婿应助niko采纳,获得10
1秒前
乐乐应助niko采纳,获得10
2秒前
所所应助niko采纳,获得10
2秒前
所所应助niko采纳,获得10
2秒前
传奇3应助niko采纳,获得10
2秒前
在水一方应助niko采纳,获得10
2秒前
大个应助niko采纳,获得10
2秒前
小蘑菇应助niko采纳,获得10
2秒前
2秒前
情怀应助曾经冰露采纳,获得10
3秒前
拟南芥完成签到,获得积分10
3秒前
CodeCraft应助zo采纳,获得10
4秒前
Jenna发布了新的文献求助10
4秒前
不得了完成签到,获得积分10
4秒前
4秒前
qqqq发布了新的文献求助10
5秒前
含糊的小土豆完成签到,获得积分10
5秒前
5秒前
6秒前
科研通AI6应助Fryanto采纳,获得10
6秒前
7秒前
7秒前
7秒前
青秋鱼罐头完成签到,获得积分10
7秒前
慕青应助niko采纳,获得10
8秒前
NexusExplorer应助niko采纳,获得10
8秒前
Ava应助niko采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531417
求助须知:如何正确求助?哪些是违规求助? 4620221
关于积分的说明 14572354
捐赠科研通 4559789
什么是DOI,文献DOI怎么找? 2498599
邀请新用户注册赠送积分活动 1478568
关于科研通互助平台的介绍 1449979