Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 功率(物理) 量子力学 热力学 物理 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE Publishing]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
3秒前
victorchen完成签到,获得积分10
3秒前
5秒前
不爱吃鱼的猫完成签到,获得积分10
6秒前
Lucas应助1900th采纳,获得10
7秒前
7秒前
8秒前
8秒前
于水清发布了新的文献求助20
9秒前
Wl0115发布了新的文献求助10
9秒前
木日发布了新的文献求助10
9秒前
甜甜完成签到 ,获得积分20
10秒前
cjs发布了新的文献求助10
10秒前
11秒前
11秒前
飘逸的苡发布了新的文献求助10
11秒前
22222发布了新的文献求助10
12秒前
Orijump发布了新的文献求助10
13秒前
Owen应助SMLW采纳,获得10
13秒前
木槿完成签到,获得积分10
14秒前
15秒前
嘎嘎发布了新的文献求助10
15秒前
RJ完成签到,获得积分10
15秒前
16秒前
16秒前
火火吴发布了新的文献求助10
17秒前
jenningseastera应助研友_VZG64n采纳,获得10
18秒前
熊熊发布了新的文献求助10
20秒前
旺仔先生完成签到,获得积分0
20秒前
yangzai发布了新的文献求助10
21秒前
FashionBoy应助不想太多采纳,获得10
22秒前
zx发布了新的文献求助10
22秒前
22秒前
26秒前
于水清完成签到,获得积分10
27秒前
听说你还在搞什么原创完成签到,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150