Joint optimization of inspection and maintenance strategy for complex multi-component systems using a quantum-inspired genetic algorithm

组分(热力学) 渡线 初始化 计算机科学 遗传算法 可靠性(半导体) 算法 编码(内存) 数学优化 可靠性工程 人工智能 工程类 机器学习 数学 物理 热力学 功率(物理) 量子力学 程序设计语言
作者
Diyin Tang,Xuan Wang,Junwei Di,Guofeng Zheng,Jing Yu
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:237 (5): 966-979 被引量:1
标识
DOI:10.1177/1748006x221102992
摘要

Advances in sensor and data technology enable real-time condition monitoring, thus extending the opportunities for condition-based maintenance (CBM) to be applied in practice. In this paper, a joint inspection and maintenance strategy for multi-component systems is proposed. The objective of this strategy is to minimize the long-run expected operational cost by jointly considering the inspection frequency of each health monitor in the system and the threshold for the maintenance initialization. To find the optimal strategy, a dynamic Bayesian network-based maintenance model is developed at first to provide reasoning of the dynamic reliability of degrading components in the multi-component system, in which complex relationship among inspections by different health monitors, different failure modes in the system, and different maintenance actions to system components are considered and quantified. Then, a quantum-inspired genetic algorithm (QGA) is proposed to optimize the strategy. With quantum encoding method, improved rotation gate, and specially designed crossover and mutation operators, the QGA is able to find the optimal strategy for multi-component systems with a general system structure. An example simplified from real practice is presented to demonstrate the effectiveness and advantages of the proposed strategy and the optimization algorithm, with comparison to similar strategies and traditional intelligent optimization algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
刚刚
刚刚
wcwzcz完成签到,获得积分10
刚刚
刚刚
哈哈哈发布了新的文献求助10
1秒前
Frida完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
乐天林完成签到 ,获得积分10
3秒前
李健的小迷弟应助maiyatang采纳,获得10
3秒前
情谊超爷完成签到 ,获得积分10
4秒前
dove完成签到,获得积分10
4秒前
guoguo发布了新的文献求助10
4秒前
yyyyy完成签到,获得积分10
5秒前
5秒前
7秒前
nnnnn发布了新的文献求助10
7秒前
7秒前
危机的盼晴完成签到,获得积分10
7秒前
小魏小魏发布了新的文献求助10
7秒前
lsfgz111完成签到 ,获得积分10
8秒前
xxfsx应助杨武天一采纳,获得10
8秒前
8秒前
坦率耳机应助杨武天一采纳,获得10
8秒前
丘比特应助杨武天一采纳,获得10
8秒前
lixm发布了新的文献求助10
8秒前
香蕉觅云应助萝卜采纳,获得10
8秒前
泠泠泠萘完成签到 ,获得积分10
8秒前
胡质斌发布了新的文献求助20
9秒前
沙琪玛完成签到,获得积分10
10秒前
11秒前
11秒前
有钱完成签到,获得积分10
11秒前
Gaoge发布了新的文献求助10
12秒前
充电宝应助Bio_dong采纳,获得10
12秒前
14秒前
Orange应助Kins采纳,获得10
14秒前
15秒前
刘壮发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429137
求助须知:如何正确求助?哪些是违规求助? 4542668
关于积分的说明 14181964
捐赠科研通 4460422
什么是DOI,文献DOI怎么找? 2445722
邀请新用户注册赠送积分活动 1436910
关于科研通互助平台的介绍 1414107