材料科学
傅里叶变换红外光谱
差示扫描量热法
X射线光电子能谱
脱氢
核化学
无机化学
催化作用
化学工程
化学
有机化学
物理
热力学
工程类
作者
Asiya A. Gainanova,Г. М. Кузьмичева,E. B. Markova,Anna Zhukova,Yuri Fionov,Ratibor G. Chumakov,Evgeny V. Khramov,A. G. Mushtakov
标识
DOI:10.1007/s10853-022-07278-6
摘要
Metal–organic polymer CuBTC and composite with CuBTC and activated carbon (CuBTC/C) were prepared by hydrothermal method (BTC3− is a linker 1,3,5-benzenetricarboxylate ion, hydrolysis temperature 130 °C, ethanol + H2O in equal proportion as a solvent) and detailed characterized by a set of methods (X-ray diffraction—XRD, X-ray absorption spectroscopy—XAS, differential scanning calorimetry—DSC, scanning electron microscopy—SEM, low-temperature sorption capacity of samples to nitrogen—BET, X-ray photoelectron spectroscopy—XPS, FTIR-spectroscopy). According to XRD and XAS data, it was found that the composition of main phase CuBTC is [Cu3BTC2(H2O)3] × (nH2O + mC2H5OH) in both samples. The catalytic properties of CuBTC and CuBTC/C samples in the reaction of ethanol dehydrogenation were studied for the first time and the selectivity to acetaldehyde (AcH) was 100% in both cases. It was shown that on the CuBTC/C catalysis, the AcH yield is two times higher than on the CuBTC sample in the reaction of ethanol (Lewis base) dehydrogenation to acetaldehyde. This fact can be explained by the higher content of main phase CuBTC in composite CuBTC/C (~ 97.5 wt%) and the Cu2+ ions (Lewis acid sites) in bulk, the higher water and Cu2+ ions content on the particle surface in CuBTC/C (DSC, FTIR, XPS), the larger pore radii in CuBTC framework of the composite CuBTC/C (according to crystallochemical calculations) and the larger hydrogenation degree of CuBTC/C (XRD, DSC, FTIR) and the smaller specific surface area of CuBTC/C (SBET = 44.4 m2/g for CuBTC/C sample and SBET = 551.3 m2/g for CuBTC).It was found that in the reaction of propane conversion to ethylene C2H4 and methane CH4, the conversion degree on the samples CuBTC and CuBTC/C was the same from 100 °C up to 340 °C, which is caused by the absence of the Bronsted acid sites on the samples with CuBTC.Graphical abstract
科研通智能强力驱动
Strongly Powered by AbleSci AI