亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China

全球导航卫星系统应用 环境科学 原位 遥感 气象学 地质学 计算机科学 全球定位系统 地理 电信
作者
Liangke Huang,Xin Wang,Si Xiong,Junyu Li,Lilong Liu,Zhixiang Mo,Bolin Fu,Hongchang He
出处
期刊:Atmospheric Research [Elsevier]
卷期号:276: 106247-106247 被引量:35
标识
DOI:10.1016/j.atmosres.2022.106247
摘要

Precipitable water vapor (PWV) product with high accuracy and high spatiotemporal resolution is important for climate change research. Hourly PWV products with a high spatiotemporal resolution can be provided by global navigation satellite system (GNSS) and global reanalysis data. The National Aeronautics and Space Administration (NASA) and the European Center for Medium-Range Weather Forecasts (ECMWF) have recently released their global reanalysis of the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and the fifth-generation ECMWF Reanalysis (ERA5), respectively. A comprehensive evaluation of these two PWV reanalysis products over China has yet to be fully investigated. In this study, the PWV products of MERRA-2 and ERA5 reanalysis over China have been systematically evaluated based on 339 GNSS sites and in-situ ground meteorological observations from year 2016 to 2018. To mitigate the uncertainties of this evaluation, three enhanced vertical correction models for temperature, pressure and PWV that we developed previously are adopted. Four weighted mean temperature ( T m ) models are established for the four regions of China (North China, South China, Tibet Plateau, and Northwest China), and they exhibit better accuracy than the other classical T m models in China. The evaluation results of the MERRA-2- and ERA5-derived PWV show that the correlation coefficient, biases, and root mean square error (RMSE) in China are 0.98/0.99, −0.51/0.38 mm, and 2.50/1.99 mm, respectively. They both exhibit relatively large difference when applied to South China. For the same grid spatial resolution, ERA5 PWV product exhibits similar performance with MERRA-2. The monthly-mean-reanalysis-derived PWV exhibits obvious seasonality and has the largest difference in summer. ERA5 PWV can provide more details of the spatial pattern compared to MERRA-2 PWV. The diurnal anomaly variation for ERA5 is more consistent with GNSS data, and some differences at certain moments during autumn and winter have been observed. These results show that ERA5 PWV and MERRA-2 PWV exhibits excellent applicability in China and can help us to efficiently use PWV products for climate research in China. • High accuracy PWV derived from dense GNSS stations for more reliable evaluation. • Enhanced vertical correction models for T, P and PWV, and T m models are used. • Comprehensive and in-depth consistency analysis of GNSS, MERRA-2, ERA5 PWV products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fukase发布了新的文献求助10
1秒前
9秒前
jfc完成签到 ,获得积分10
15秒前
liuliu发布了新的文献求助10
15秒前
怡然自中完成签到 ,获得积分10
37秒前
延迟整流钾电流完成签到,获得积分10
45秒前
1分钟前
Hu完成签到,获得积分20
1分钟前
liuliu发布了新的文献求助10
1分钟前
lovelife完成签到,获得积分10
1分钟前
liuliu完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
fukase完成签到,获得积分10
1分钟前
renhuizhi完成签到,获得积分10
2分钟前
xxx发布了新的文献求助10
2分钟前
zpli完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
小雨发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
默默善愁发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
我是老大应助默默善愁采纳,获得30
3分钟前
4分钟前
犬来八荒发布了新的文献求助10
4分钟前
4分钟前
Migue发布了新的文献求助50
4分钟前
cy完成签到 ,获得积分10
4分钟前
4分钟前
cccttt发布了新的文献求助10
4分钟前
可爱的函函应助cccttt采纳,获得10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617127
求助须知:如何正确求助?哪些是违规求助? 4701470
关于积分的说明 14913716
捐赠科研通 4749642
什么是DOI,文献DOI怎么找? 2549305
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091