全球导航卫星系统应用
环境科学
原位
遥感
气象学
地质学
计算机科学
全球定位系统
地理
电信
作者
Liangke Huang,Xin Wang,Si Xiong,Junyu Li,Lilong Liu,Zhixiang Mo,Bolin Fu,Hongchang He
标识
DOI:10.1016/j.atmosres.2022.106247
摘要
Precipitable water vapor (PWV) product with high accuracy and high spatiotemporal resolution is important for climate change research. Hourly PWV products with a high spatiotemporal resolution can be provided by global navigation satellite system (GNSS) and global reanalysis data. The National Aeronautics and Space Administration (NASA) and the European Center for Medium-Range Weather Forecasts (ECMWF) have recently released their global reanalysis of the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and the fifth-generation ECMWF Reanalysis (ERA5), respectively. A comprehensive evaluation of these two PWV reanalysis products over China has yet to be fully investigated. In this study, the PWV products of MERRA-2 and ERA5 reanalysis over China have been systematically evaluated based on 339 GNSS sites and in-situ ground meteorological observations from year 2016 to 2018. To mitigate the uncertainties of this evaluation, three enhanced vertical correction models for temperature, pressure and PWV that we developed previously are adopted. Four weighted mean temperature ( T m ) models are established for the four regions of China (North China, South China, Tibet Plateau, and Northwest China), and they exhibit better accuracy than the other classical T m models in China. The evaluation results of the MERRA-2- and ERA5-derived PWV show that the correlation coefficient, biases, and root mean square error (RMSE) in China are 0.98/0.99, −0.51/0.38 mm, and 2.50/1.99 mm, respectively. They both exhibit relatively large difference when applied to South China. For the same grid spatial resolution, ERA5 PWV product exhibits similar performance with MERRA-2. The monthly-mean-reanalysis-derived PWV exhibits obvious seasonality and has the largest difference in summer. ERA5 PWV can provide more details of the spatial pattern compared to MERRA-2 PWV. The diurnal anomaly variation for ERA5 is more consistent with GNSS data, and some differences at certain moments during autumn and winter have been observed. These results show that ERA5 PWV and MERRA-2 PWV exhibits excellent applicability in China and can help us to efficiently use PWV products for climate research in China. • High accuracy PWV derived from dense GNSS stations for more reliable evaluation. • Enhanced vertical correction models for T, P and PWV, and T m models are used. • Comprehensive and in-depth consistency analysis of GNSS, MERRA-2, ERA5 PWV products.
科研通智能强力驱动
Strongly Powered by AbleSci AI