清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High-precision GNSS PWV retrieval using dense GNSS sites and in-situ meteorological observations for the evaluation of MERRA-2 and ERA5 reanalysis products over China

全球导航卫星系统应用 环境科学 原位 遥感 气象学 地质学 计算机科学 全球定位系统 地理 电信
作者
Liangke Huang,Xin Wang,Si Xiong,Junyu Li,Lilong Liu,Zhixiang Mo,Bolin Fu,Hongchang He
出处
期刊:Atmospheric Research [Elsevier]
卷期号:276: 106247-106247 被引量:35
标识
DOI:10.1016/j.atmosres.2022.106247
摘要

Precipitable water vapor (PWV) product with high accuracy and high spatiotemporal resolution is important for climate change research. Hourly PWV products with a high spatiotemporal resolution can be provided by global navigation satellite system (GNSS) and global reanalysis data. The National Aeronautics and Space Administration (NASA) and the European Center for Medium-Range Weather Forecasts (ECMWF) have recently released their global reanalysis of the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and the fifth-generation ECMWF Reanalysis (ERA5), respectively. A comprehensive evaluation of these two PWV reanalysis products over China has yet to be fully investigated. In this study, the PWV products of MERRA-2 and ERA5 reanalysis over China have been systematically evaluated based on 339 GNSS sites and in-situ ground meteorological observations from year 2016 to 2018. To mitigate the uncertainties of this evaluation, three enhanced vertical correction models for temperature, pressure and PWV that we developed previously are adopted. Four weighted mean temperature ( T m ) models are established for the four regions of China (North China, South China, Tibet Plateau, and Northwest China), and they exhibit better accuracy than the other classical T m models in China. The evaluation results of the MERRA-2- and ERA5-derived PWV show that the correlation coefficient, biases, and root mean square error (RMSE) in China are 0.98/0.99, −0.51/0.38 mm, and 2.50/1.99 mm, respectively. They both exhibit relatively large difference when applied to South China. For the same grid spatial resolution, ERA5 PWV product exhibits similar performance with MERRA-2. The monthly-mean-reanalysis-derived PWV exhibits obvious seasonality and has the largest difference in summer. ERA5 PWV can provide more details of the spatial pattern compared to MERRA-2 PWV. The diurnal anomaly variation for ERA5 is more consistent with GNSS data, and some differences at certain moments during autumn and winter have been observed. These results show that ERA5 PWV and MERRA-2 PWV exhibits excellent applicability in China and can help us to efficiently use PWV products for climate research in China. • High accuracy PWV derived from dense GNSS stations for more reliable evaluation. • Enhanced vertical correction models for T, P and PWV, and T m models are used. • Comprehensive and in-depth consistency analysis of GNSS, MERRA-2, ERA5 PWV products.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
41秒前
42秒前
1分钟前
1分钟前
silence完成签到 ,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
1分钟前
ccl发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
科研通AI6应助华杰采纳,获得10
3分钟前
3分钟前
Moto_Fang完成签到 ,获得积分10
3分钟前
华杰完成签到,获得积分10
3分钟前
yipmyonphu应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
白华苍松发布了新的文献求助10
4分钟前
ccl完成签到,获得积分10
4分钟前
4分钟前
4分钟前
shhoing应助niko采纳,获得10
4分钟前
领导范儿应助niko采纳,获得10
4分钟前
酷波er应助niko采纳,获得10
4分钟前
科研通AI2S应助niko采纳,获得10
4分钟前
小蘑菇应助niko采纳,获得10
4分钟前
4分钟前
爆米花应助白华苍松采纳,获得10
4分钟前
5分钟前
muriel完成签到,获得积分0
5分钟前
如歌完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
滕皓轩完成签到 ,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
文献搬运工完成签到 ,获得积分0
6分钟前
灶灶完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022