钯
双金属片
催化作用
铜
离子液体
电催化剂
法拉第效率
化学
无机化学
金属
选择性
氢溢流
二氧化碳电化学还原
离子键合
电化学
电极
一氧化碳
物理化学
有机化学
离子
作者
Xiao-Qiang Li,Guo-Yi Duan,Xian-Xia Yang,Li-Jun Han,Bao-Hua Xu
标识
DOI:10.1016/j.fmre.2021.12.009
摘要
Electrocatalytic reduction of CO 2 (CO 2 RR) to multi-electron (> 2e – ) products provides a green and sustainable route for producing fuels and chemicals. Introducing the second metal element is a feasible strategy for "managing" the key intermediate on Cu-based materials to further improve the CO 2 RR catalytic performance. In this work, palladium, which promises the generation of CO, was introduced into the poly(ionic liquid)-based copper hybrid (Cu@PIL) to construct a novel Cu-Pd bimetallic electrocatalyst (Cu@PIL@Pd). Remarkably, with a small dosage of palladium (2.0 mol% compared with Cu), a high faradaic efficiency (FE) for C 2+ products (68.7%) was achieved at –1.01 V (with respect to the reversible hydrogen electrode (RHE), the same below) with a high partial current density of 178.3 mA cm –2 . Meanwhile, high selectivity towards CH 4 (FE = 42.5%) and corresponding partial current density of 172.8 mA cm –2 were obtained on the same catalyst at –1.24 V, signifying a significant potential-dependent selectivity. Mechanistic studies reveal that both copper and palladium oxides are reduced to metallic states during the CO 2 RR. The presence of the adjoint copper phase and the highly dispersed electrostatic layer promote the generation of CO on the palladium components (both the PdO 2 phase and the Pd(II) site). Besides, the local CO* was enriched by the significant diffusion resistance of CO in the PIL layer. The spillover of CO* from Pd sites to the adjoint Cu sites, accompanied by the increased local concentration of CO* around Cu sites, accounted for the observed good CO 2 RR catalytic performance, especially the high C 2+ product selectivity. A poly(ionic liquid) (PIL)-based Cu-Pd tandem catalyst was constructed for highly efficient electrocatalytic CO 2 reduction (CO 2 RR). Cu nanoparticles (NPs) derived Cu-PIL interfaces and Pd species derived PIL-Pd interfaces show tandem effect during CO 2 RR process. Under respective optimum conditions, a high FE C2+ of 68.7% with a high partial current density of 178.3 mA cm –2 and a moderate FE CH4 of 42.5% with a partial current density of 172.8 mA cm –2 was achieved on this tandem catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI