Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

草原 随机森林 物候学 特征(语言学) 特征选择 遥感 植被(病理学) 土地覆盖 生物量(生态学) 环境科学 计算机科学 生态学 地理 土地利用 人工智能 医学 语言学 哲学 病理 生物
作者
Yifan Zhao,Weiwei Zhu,Panpan Wei,Peng Fang,Xiwang Zhang,Y. Niu,Wenjun Liu,Hao Zhao,Qirui Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:135: 108529-108529 被引量:39
标识
DOI:10.1016/j.ecolind.2021.108529
摘要

It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
婷婷完成签到,获得积分10
2秒前
学呀学完成签到 ,获得积分10
2秒前
ldk完成签到,获得积分10
3秒前
嘉梦完成签到,获得积分10
4秒前
天天快乐应助Passskd采纳,获得10
4秒前
swy完成签到,获得积分10
4秒前
暴富完成签到,获得积分10
5秒前
kitty完成签到 ,获得积分10
5秒前
8秒前
酷波er应助心好塞采纳,获得10
9秒前
Passskd完成签到,获得积分10
10秒前
fang应助科研通管家采纳,获得10
11秒前
山野村夫应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
予修应助科研通管家采纳,获得10
11秒前
liliflower应助科研通管家采纳,获得10
11秒前
伶俐乐菱应助科研通管家采纳,获得10
11秒前
伶俐乐菱应助科研通管家采纳,获得10
11秒前
FAN应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
FAN应助科研通管家采纳,获得10
11秒前
11秒前
李治海发布了新的文献求助10
12秒前
zhuzhu完成签到,获得积分10
13秒前
星辰大海应助jiaolulu采纳,获得10
13秒前
14秒前
颖宝老公完成签到,获得积分0
14秒前
清爽夜雪完成签到,获得积分0
15秒前
量子星尘发布了新的文献求助10
15秒前
大翟完成签到,获得积分10
17秒前
不远完成签到,获得积分10
18秒前
冯珂完成签到 ,获得积分10
20秒前
Graham完成签到,获得积分10
20秒前
稳重乌冬面完成签到 ,获得积分10
22秒前
一苇以航完成签到 ,获得积分10
23秒前
戚雅柔完成签到 ,获得积分10
23秒前
vsvsgo完成签到,获得积分10
24秒前
米奇完成签到 ,获得积分10
24秒前
加一点荒谬完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022