Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

草原 随机森林 物候学 特征(语言学) 特征选择 遥感 植被(病理学) 土地覆盖 生物量(生态学) 环境科学 计算机科学 生态学 地理 土地利用 人工智能 病理 哲学 生物 医学 语言学
作者
Yifan Zhao,Weiwei Zhu,Panpan Wei,Peng Fang,Xiwang Zhang,Y. Niu,Wenjun Liu,Hao Zhao,Qirui Wu
出处
期刊:Ecological Indicators [Elsevier]
卷期号:135: 108529-108529 被引量:39
标识
DOI:10.1016/j.ecolind.2021.108529
摘要

It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
5秒前
宫宛儿完成签到,获得积分10
6秒前
JamesPei应助ybheqiang123456采纳,获得10
8秒前
9秒前
10秒前
魔幻冷风发布了新的文献求助10
10秒前
10秒前
10秒前
wxy发布了新的文献求助20
14秒前
VDC应助兔BF采纳,获得10
14秒前
wuyanzu完成签到,获得积分20
15秒前
Micro5714发布了新的文献求助10
15秒前
wgm1104发布了新的文献求助10
16秒前
ding应助炙热往事采纳,获得10
16秒前
XLXY发布了新的文献求助10
17秒前
淡然子轩发布了新的文献求助10
17秒前
努力的咩咩完成签到 ,获得积分10
19秒前
陈喵喵完成签到 ,获得积分10
22秒前
hahaha完成签到,获得积分10
24秒前
25秒前
25秒前
26秒前
安静的寒风完成签到,获得积分10
27秒前
27秒前
29秒前
一五完成签到,获得积分10
30秒前
炙热往事发布了新的文献求助10
30秒前
张宇航发布了新的文献求助10
33秒前
wgm1104完成签到,获得积分10
33秒前
爆米花应助heavyD采纳,获得10
33秒前
所所应助黎耀辉采纳,获得10
38秒前
38秒前
丘比特应助兔BF采纳,获得10
39秒前
李静完成签到,获得积分10
39秒前
hahaha发布了新的文献求助10
39秒前
欣喜电源完成签到,获得积分10
41秒前
冷酷含羞草完成签到 ,获得积分10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243893
求助须知:如何正确求助?哪些是违规求助? 2887776
关于积分的说明 8249778
捐赠科研通 2556393
什么是DOI,文献DOI怎么找? 1384529
科研通“疑难数据库(出版商)”最低求助积分说明 649877
邀请新用户注册赠送积分活动 625867