Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

草原 随机森林 物候学 特征(语言学) 特征选择 遥感 植被(病理学) 土地覆盖 生物量(生态学) 环境科学 计算机科学 生态学 地理 土地利用 人工智能 医学 语言学 哲学 病理 生物
作者
Yifan Zhao,Weiwei Zhu,Panpan Wei,Peng Fang,Xiwang Zhang,Y. Niu,Wenjun Liu,Hao Zhao,Qirui Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:135: 108529-108529 被引量:39
标识
DOI:10.1016/j.ecolind.2021.108529
摘要

It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cfsyyfujia完成签到 ,获得积分10
刚刚
Qiao应助科研通管家采纳,获得10
刚刚
Qiao应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
小狐狸完成签到,获得积分10
1秒前
领导范儿应助wwww采纳,获得10
2秒前
搁浅完成签到,获得积分10
2秒前
健壮的凝冬完成签到 ,获得积分10
2秒前
tian完成签到,获得积分10
3秒前
dypdyp应助blue2021采纳,获得10
3秒前
supertkeb完成签到,获得积分10
4秒前
gao发布了新的文献求助10
5秒前
乐于助人大好人完成签到 ,获得积分10
5秒前
5秒前
6秒前
Eva完成签到,获得积分10
6秒前
酱子完成签到,获得积分10
6秒前
米兰的小铁匠完成签到 ,获得积分10
6秒前
sunshine完成签到,获得积分10
7秒前
7秒前
Nic完成签到 ,获得积分10
8秒前
小颉江二郎完成签到,获得积分10
8秒前
小二郎应助初宏翔采纳,获得10
8秒前
激动的新筠完成签到,获得积分10
8秒前
五花膘完成签到 ,获得积分10
9秒前
9秒前
斗牛的番茄完成签到 ,获得积分10
9秒前
9秒前
充电宝应助泡椒采纳,获得10
10秒前
10秒前
明理的慕蕊完成签到,获得积分10
10秒前
zonker完成签到,获得积分10
11秒前
nuomici完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968719
求助须知:如何正确求助?哪些是违规求助? 3513608
关于积分的说明 11168681
捐赠科研通 3248960
什么是DOI,文献DOI怎么找? 1794573
邀请新用户注册赠送积分活动 875194
科研通“疑难数据库(出版商)”最低求助积分说明 804716