Classification of Zambian grasslands using random forest feature importance selection during the optimal phenological period

草原 随机森林 物候学 特征(语言学) 特征选择 遥感 植被(病理学) 土地覆盖 生物量(生态学) 环境科学 计算机科学 生态学 地理 土地利用 人工智能 医学 语言学 哲学 病理 生物
作者
Yifan Zhao,Weiwei Zhu,Panpan Wei,Peng Fang,Xiwang Zhang,Y. Niu,Wenjun Liu,Hao Zhao,Qirui Wu
出处
期刊:Ecological Indicators [Elsevier BV]
卷期号:135: 108529-108529 被引量:39
标识
DOI:10.1016/j.ecolind.2021.108529
摘要

It is important to conduct grassland resource surveys for the scientific management of grassland resources. Currently, remote sensing technology is widely used to classify land cover. The fine classification datasets of grasslands with high spatial and temporal resolutions are very necessary for scientific research. In order to use remote sensing data conveniently, this study selected the Google Earth Engine platform to select 100-m resolution PROBA-V remote sensing images from 2018 of Zambia, in central Africa. The differences in the normalized vegetation index time-series curves of the different types of grasslands were combined, and June to October was identified as the best phenological classification period. Using the random forest feature importance selection algorithm, the original feature indices and identification of the different grass types were optimized. The results indicate that using the optimal feature combination selected by the random forest feature importance selection algorithm to refine the classification of grasslands improves computational efficiency with an overall accuracy of 83%, which is 3% higher than that of the original feature combination. Among the optimal feature combinations, elevation contributes the most to the improvement classification accuracy. The most significant improvement in the producer’s accuracy was found for grassland (30% increase) and savanna (22% increase). Adjustment of the appropriate phenological periods according to the seasonal characteristics of different regions, the methodology established in this study can be easily applied to other areas for the fine classification of grasslands and the subsequent calculation of grassland biomass and carbon storage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
望北楼主发布了新的文献求助10
刚刚
刚刚
Orange应助澡雪采纳,获得10
刚刚
momo发布了新的文献求助10
刚刚
1秒前
1秒前
wjx发布了新的文献求助10
1秒前
kuo发布了新的文献求助10
1秒前
思源应助呆呆熊采纳,获得10
2秒前
2023204306324发布了新的文献求助10
2秒前
ED应助幸福的醉山采纳,获得10
2秒前
2秒前
kk应助义气凝阳采纳,获得30
2秒前
2秒前
Zack发布了新的文献求助10
2秒前
追寻的广缘完成签到,获得积分10
2秒前
MYYY发布了新的文献求助10
3秒前
3秒前
WTX完成签到,获得积分10
4秒前
李家人应助勤劳的鸡采纳,获得10
4秒前
liwen发布了新的文献求助10
4秒前
钠水得氢发布了新的文献求助10
5秒前
小新小新完成签到 ,获得积分10
5秒前
科研通AI2S应助啦啦啦采纳,获得10
5秒前
5秒前
6秒前
6秒前
王雪瑞发布了新的文献求助10
6秒前
Forestzoo完成签到,获得积分10
7秒前
8秒前
小刘发布了新的文献求助10
8秒前
年轻半雪发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
CodeCraft应助黑黑黑采纳,获得10
8秒前
9秒前
科研宇完成签到,获得积分10
9秒前
9秒前
Zack完成签到,获得积分10
10秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974844
求助须知:如何正确求助?哪些是违规求助? 3519270
关于积分的说明 11197844
捐赠科研通 3255496
什么是DOI,文献DOI怎么找? 1797791
邀请新用户注册赠送积分活动 877187
科研通“疑难数据库(出版商)”最低求助积分说明 806202