材料科学
光电流
氧化物
光催化
电解质
光电化学
析氧
分解水
氧气
载流子
光电化学电池
电极
化学工程
锐钛矿
光电阴极
化学物理
光电子学
催化作用
电化学
电子
物理化学
化学
生物化学
有机化学
冶金
工程类
物理
量子力学
作者
Kwang Hee Kim,Changwon Choi,Seokhyun Choung,Yoonjun Cho,Sungsoon Kim,Cheoulwoo Oh,Kug‐Seung Lee,Chang‐Lyoul Lee,Kan Zhang,Jeong Woo Han,Si‐Young Choi,Jong Hyeok Park
标识
DOI:10.1002/aenm.202103495
摘要
Abstract Oxygen vacancies have been treated as an important material engineering tool to enhance catalytic performance; for instance, oxygen vacancies suppress charge recombination at the Schottky interface, and thus, the photocurrent can be improved. In this regard, the gradient distribution of oxygen vacancies in n‐type metal oxides produces the ideal band structure for minimizing e − /h + recombination by efficient hole extraction; however, its achievement remains a daunting challenge. Here, a photoelectrochemical (PEC)‐driven “self‐purification” process is suggested, which can effectively generate a gradient distribution of oxygen vacancies in the thickness range of ≈9.5 nm. As a result, a charge transport efficiency of >95% can be achieved by efficient hole migration from the photoanode to the electrolyte. This unique protocol is expected to provide an advanced metal oxide photocatalyst and photoelectrochemical electrode that exhibit superior photocatalytic performance with enhanced charge separation.
科研通智能强力驱动
Strongly Powered by AbleSci AI