亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model's accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
10秒前
zsyf完成签到,获得积分10
15秒前
minomous发布了新的文献求助10
15秒前
小二郎应助Mtx3098520564采纳,获得50
20秒前
27秒前
余叶完成签到,获得积分10
32秒前
别熬夜发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
39秒前
43秒前
43秒前
Ava应助科研通管家采纳,获得10
43秒前
GingerF举报雪上一枝蒿求助涉嫌违规
45秒前
余叶发布了新的文献求助10
46秒前
Jasper应助lucky采纳,获得10
55秒前
Panther完成签到,获得积分10
59秒前
Virtual完成签到,获得积分0
1分钟前
1分钟前
1分钟前
decade发布了新的文献求助10
1分钟前
脑洞疼应助decade采纳,获得10
1分钟前
万事屋完成签到 ,获得积分10
1分钟前
1分钟前
小蘑菇应助暗器采纳,获得30
1分钟前
xc发布了新的文献求助10
2分钟前
xc完成签到,获得积分10
2分钟前
酷波er应助多多多芋圆采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
Orange应助afbb采纳,获得10
2分钟前
kei完成签到 ,获得积分10
2分钟前
2分钟前
红烧肉耶完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
多多多芋圆完成签到,获得积分10
3分钟前
oncoma完成签到,获得积分10
3分钟前
bzd完成签到 ,获得积分10
3分钟前
大家好完成签到 ,获得积分10
3分钟前
无花果应助oncoma采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610838
求助须知:如何正确求助?哪些是违规求助? 4016651
关于积分的说明 12435494
捐赠科研通 3698299
什么是DOI,文献DOI怎么找? 2039387
邀请新用户注册赠送积分活动 1072245
科研通“疑难数据库(出版商)”最低求助积分说明 955918