Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model's accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神经蛙完成签到 ,获得积分10
刚刚
1秒前
tt19960503完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
花花屯屯完成签到 ,获得积分10
11秒前
爱科研的小李完成签到 ,获得积分10
12秒前
wakawaka完成签到 ,获得积分10
12秒前
含光完成签到,获得积分10
14秒前
vinni完成签到 ,获得积分10
14秒前
bear发布了新的文献求助10
16秒前
吉祥高趙完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
chiien完成签到 ,获得积分10
26秒前
果果完成签到,获得积分10
27秒前
木子雨完成签到 ,获得积分10
27秒前
32429606完成签到 ,获得积分10
30秒前
33秒前
量子星尘发布了新的文献求助10
35秒前
onmyway完成签到,获得积分10
37秒前
谨慎的CZ完成签到 ,获得积分10
37秒前
慕容飞凤完成签到,获得积分10
38秒前
川川完成签到 ,获得积分10
38秒前
天仙狂醉完成签到 ,获得积分10
41秒前
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
43秒前
科研通AI6应助科研通管家采纳,获得10
43秒前
量子星尘发布了新的文献求助10
46秒前
kjdgahdg完成签到,获得积分10
47秒前
fleix发布了新的文献求助10
49秒前
不重名完成签到 ,获得积分10
49秒前
金土豆的福袋子完成签到 ,获得积分20
51秒前
羽冰酒完成签到 ,获得积分10
53秒前
Jzhaoc580完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
57秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671546
求助须知:如何正确求助?哪些是违规求助? 4919419
关于积分的说明 15134948
捐赠科研通 4830339
什么是DOI,文献DOI怎么找? 2587027
邀请新用户注册赠送积分活动 1540660
关于科研通互助平台的介绍 1498936