Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model's accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwz应助33采纳,获得20
刚刚
dg_fisher发布了新的文献求助10
1秒前
1秒前
2秒前
橘子发布了新的文献求助10
3秒前
完美世界应助与闲采纳,获得20
3秒前
抹茶味的奶酥完成签到,获得积分10
5秒前
11111111完成签到,获得积分10
5秒前
科目三应助乾乾采纳,获得10
6秒前
6秒前
云洲完成签到,获得积分10
6秒前
6秒前
Noldor完成签到,获得积分10
6秒前
我不到啊发布了新的文献求助10
6秒前
NexusExplorer应助十八采纳,获得10
7秒前
8秒前
喝一碗粥发布了新的文献求助10
8秒前
11秒前
12秒前
13秒前
羽毛发布了新的文献求助30
13秒前
Hello应助Jiayi采纳,获得10
13秒前
14秒前
jadexu完成签到,获得积分10
15秒前
15秒前
笛卡尔发布了新的文献求助10
16秒前
16秒前
18秒前
18秒前
乔木完成签到,获得积分20
18秒前
18秒前
深情安青应助土豪的严青采纳,获得10
18秒前
脑洞疼应助土豪的严青采纳,获得10
19秒前
19秒前
19秒前
小何发布了新的文献求助30
19秒前
舒服的从阳完成签到 ,获得积分10
19秒前
19秒前
铜锣烧完成签到 ,获得积分10
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5271588
求助须知:如何正确求助?哪些是违规求助? 4429244
关于积分的说明 13787991
捐赠科研通 4307583
什么是DOI,文献DOI怎么找? 2363636
邀请新用户注册赠送积分活动 1359308
关于科研通互助平台的介绍 1322221