Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 人工智能 图形 模式识别(心理学) 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model's accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
咸鱼发布了新的文献求助10
3秒前
李存发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
5秒前
8R60d8完成签到,获得积分0
5秒前
SJJ应助满意青筠采纳,获得10
6秒前
小波波波完成签到,获得积分10
7秒前
8秒前
飞飞鱼完成签到,获得积分10
8秒前
水云身完成签到,获得积分10
8秒前
Csy发布了新的文献求助20
8秒前
adamchris发布了新的文献求助30
9秒前
邹友亮完成签到,获得积分10
10秒前
55发布了新的文献求助10
11秒前
12秒前
12秒前
鱼莉完成签到,获得积分10
12秒前
13秒前
华仔应助李存采纳,获得10
15秒前
15秒前
16秒前
17秒前
李健的小迷弟应助Eric采纳,获得10
18秒前
CCC发布了新的文献求助10
20秒前
汉堡包应助cara33采纳,获得10
22秒前
脑洞疼应助lumei661314采纳,获得10
22秒前
23秒前
今后应助忧郁的鱿鱼采纳,获得10
23秒前
24秒前
24秒前
生动友容发布了新的文献求助10
24秒前
露露露完成签到,获得积分10
25秒前
26秒前
ppwq完成签到 ,获得积分10
26秒前
华仔应助seven采纳,获得10
26秒前
香蕉觅云应助LEMON采纳,获得10
27秒前
纪震宇发布了新的文献求助10
27秒前
生动娩发布了新的文献求助10
27秒前
阳光雨完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599407
求助须知:如何正确求助?哪些是违规求助? 4685010
关于积分的说明 14837502
捐赠科研通 4668037
什么是DOI,文献DOI怎么找? 2537906
邀请新用户注册赠送积分活动 1505398
关于科研通互助平台的介绍 1470783