Accurately Predicting circRNA-disease Associations Using Variational Graph Auto-encoders and LightGBM

计算机科学 疾病 人工智能 分类器(UML) 图形 机器学习 数据挖掘 模式识别(心理学) 医学 病理 理论计算机科学
作者
Siyuan Shen,Yurong Qian,Jingjing Zheng,Junyi Liu,Lei Deng
标识
DOI:10.1109/bibm52615.2021.9669467
摘要

Many studies have shown that circRNAs play essential roles in various biological processes. With the development of technology, the associations between circRNA and diseases have been discovered, and these associations will help diagnose and treat diseases. However, it is time-consuming and costly to detect the associations between circRNAs and diseases with the experimental methods. Therefore, it is necessary to develop a feasible and effective computational method for predicting circRNA-disease associations. In this paper, we propose a new computational framework called VLCDA to identify the potential circRNA-disease associations. Initially, we construct features by fusing circRNA expression profile features and circRNA protein-coding ability features, disease semantic features, circRNA and disease GIP Kernel features, and use VGAE to mine its deep latent features. Finally, we use the fusion features to train the LightGBM classifier and the trained LightGBM to identify the circRNA-disease associations. The main contribution of VLCDA is that we firstly add circRNA protein-coding ability feature to the circRNA-disease association prediction model. In addition, VLCDA uses variational graph auto-encoders to extract the latent features of circRNA-disease associations to improve the prediction model’s accuracy further. VLCDA obtained the area under the ROC curve (AUC) scores of 0.9783 in 5-fold cross-validation. In addition, in the case studies, 16 of the top 20 circRNA-disease associations predicted by VLCDA have been confirmed by relevant literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助史塔克采纳,获得10
刚刚
共享精神应助cao采纳,获得10
4秒前
Henry给cnspower的求助进行了留言
8秒前
楠楠2001完成签到 ,获得积分10
9秒前
10秒前
史塔克发布了新的文献求助10
14秒前
日月轮回完成签到,获得积分20
15秒前
地瓜儿发布了新的文献求助10
15秒前
19秒前
19秒前
谨慎不二发布了新的文献求助10
19秒前
玖梦发布了新的文献求助10
22秒前
25秒前
哼哼哈嘿完成签到,获得积分10
27秒前
地瓜儿完成签到,获得积分10
27秒前
curtisness应助贝肯妮采纳,获得20
28秒前
正义狗狗侠完成签到,获得积分10
30秒前
32秒前
一叶知秋完成签到,获得积分10
32秒前
33秒前
hgc完成签到,获得积分10
33秒前
Su发布了新的文献求助10
33秒前
Amber完成签到,获得积分10
36秒前
jiang发布了新的文献求助10
37秒前
小辛发布了新的文献求助10
37秒前
谨慎不二发布了新的文献求助10
39秒前
actor2006完成签到,获得积分10
40秒前
Iwylm发布了新的文献求助10
42秒前
LeeY.完成签到,获得积分10
42秒前
43秒前
共享精神应助七喜采纳,获得10
44秒前
44秒前
曙光完成签到,获得积分10
45秒前
46秒前
48秒前
48秒前
48秒前
坐看云起完成签到,获得积分10
49秒前
Akim应助jkr采纳,获得30
49秒前
无情向梦发布了新的文献求助10
52秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079