Development of a multi-marker model combining HE4, CA125, progesterone, and estradiol for distinguishing benign from malignant pelvic masses in postmenopausal women

医学 绝经后妇女 内科学 癌抗原 肿瘤标志物 妇科 上皮性卵巢癌 肿瘤科 卵巢癌 泌尿科 癌症
作者
Pengjun Zhang,Chuanxin Wang,Liming Cheng,Peng Zhang,Lin Guo,Wanli Liu,Zhongying Zhang,Yueyan Huang,Qishui Ou,Xinyu Wen,Yaping Tian
出处
期刊:Tumor Biology [SAGE]
卷期号:37 (2): 2183-2191 被引量:12
标识
DOI:10.1007/s13277-015-4037-3
摘要

The purpose of this study was to evaluate HE4, CA125, progesterone (Prog), and estradiol (E2) for differentiating pelvic masses in postmenopausal women and aimed to build a multi-marker model which may improve the diagnostic value. HE4, CA125, Prog, and E2 were detected in 57 benign pelvic masses (BPM) and 92 epithelial ovarian cancer (EOC) patients. A total of 66.66 % of the BPM and EOC serum samples were used for building the differentiation model, and the remaining 33.33 % of the BPM and EOC serum samples were used for validation of the differentiation model. After comparing by Z score statistics, HE4 + CA125 + E2 model was chosen as the best multi-marker model. In the training group, the area under curve of the HE4 + CA125 + E2 model was 0.97 (0.93, 1.00), sensitivities of the model for distinguishing BPM from EOC, from early EOC, and from advanced EOC were 90.16, 86.21, and 95.65 %; specificities were 92.11, 92.11, and 92.11 %. In the validation group, sensitivities of HE4 + CA125 + E2 model for distinguishing BPM from EOC, from early EOC, and from advanced EOC were 96.77, 100.00, and 87.50 %, specificities were 84.21, 100.00, and 84.21 %. The multi-marker model showed significant improvement when compared to CA125 or HE4, and it might be an effective pelvic mass differentiation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LamChem完成签到,获得积分10
1秒前
2秒前
研路辛苦了完成签到,获得积分10
2秒前
怡然的月月子应助11采纳,获得10
3秒前
zhou_AGCT完成签到,获得积分10
4秒前
4秒前
Lucas应助sandy采纳,获得30
4秒前
踏水追风完成签到,获得积分10
4秒前
yiwei完成签到,获得积分10
4秒前
wjy发布了新的文献求助10
5秒前
wwz应助ZYC采纳,获得10
5秒前
我不秃头发布了新的文献求助10
7秒前
整齐星月完成签到,获得积分20
7秒前
bkagyin应助yiwei采纳,获得10
8秒前
8秒前
pp-doctor发布了新的文献求助10
9秒前
10秒前
10秒前
思源应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得10
11秒前
可爱的函函应助北城采纳,获得10
12秒前
L77完成签到,获得积分0
13秒前
我不秃头完成签到,获得积分10
13秒前
田様应助jaslek采纳,获得10
14秒前
14秒前
王炸炸完成签到,获得积分10
16秒前
16秒前
mogui发布了新的文献求助10
16秒前
深情安青应助陈淑玲采纳,获得10
17秒前
Han完成签到,获得积分10
18秒前
ZZY发布了新的文献求助10
18秒前
皆空发布了新的文献求助10
18秒前
禾斗科完成签到,获得积分10
19秒前
情怀应助水水水采纳,获得10
19秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655