Multi‐way analysis of flux distributions across multiple conditions

通量平衡分析 生物信息学 主成分分析 背景(考古学) 生物系统 多元统计 代谢通量分析 焊剂(冶金) 基因组 计算生物学 生物 计算机科学 数学 统计 化学 遗传学 基因 生物化学 古生物学 有机化学 新陈代谢
作者
Maikel P. H. Verouden,Richard A. Notebaart,Johan A. Westerhuis,Mariët J. van der Werf,Bas Teusink,Age K. Smilde
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:23 (7-8): 406-420 被引量:18
标识
DOI:10.1002/cem.1238
摘要

Abstract With the availability of genome sequences of many organisms and information about gene‐protein‐reaction (GPR) associations with respect to these organisms genome‐scale metabolic networks can be reconstructed. In cellular systems biology these networks are used to model the behavior of metabolism in context of cell growth in terms of fluxes (reaction rates) through reactions in the network. Because the flux through each reaction can generally vary within a range, many flux distributions of the entire network are possible. However, since reactions are connected by common metabolites, reactions that are functionally coherent, are expected to highly correlate in terms of their flux value over different flux distributions. In this paper the genome‐scale network of a lactic acid bacterium, named Lactococcus lactis MG1363, is used to generate flux distributions for multiple in silico environmental conditions, mimicking laboratory growth conditions. The flux distributions per condition are used to calculate a correlation matrix for each condition. Subsequently the correlations between the reactions are analyzed in a multivariate approach across the in silico environmental conditions in order to identify correlations that are invariant (i.e. independent of the environment) and correlations that are variant across conditions (i.e. dependent of the environment). The applied multivariate methods are Parallel Factor Analysis (PARAFAC) and Principal Component Analysis (PCA). The discussion of the results of both methods leads to the question whether latent variable models are suitable analyzing this type of data. Copyright © 2009 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韭菜盒子发布了新的文献求助10
刚刚
酷波er应助听闻采纳,获得10
刚刚
赫连人杰发布了新的文献求助200
刚刚
不想干活应助可乐不加冰采纳,获得10
刚刚
林沐发布了新的文献求助10
刚刚
舒心白山完成签到 ,获得积分10
1秒前
殷晓阳发布了新的文献求助10
1秒前
小余完成签到,获得积分20
1秒前
跳跃仙人掌发布了新的文献求助100
1秒前
Starset应助欣喜紫真采纳,获得20
1秒前
evergarden完成签到,获得积分10
2秒前
所所应助帅气的冬菱采纳,获得10
3秒前
小二郎应助火星上的中恶采纳,获得80
3秒前
研友_VZG7GZ应助yehuaiyu采纳,获得10
3秒前
3秒前
3秒前
宠仙发布了新的文献求助10
4秒前
yyyfff应助ke2w1n12138采纳,获得10
4秒前
ljh1771发布了新的文献求助30
4秒前
Enckson完成签到,获得积分10
4秒前
4秒前
CodeCraft应助123采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Harden发布了新的文献求助20
5秒前
5秒前
两米发布了新的文献求助10
5秒前
华仔应助若雨沫采纳,获得30
5秒前
华仔应助lys采纳,获得10
7秒前
热情灵珊完成签到,获得积分10
7秒前
7秒前
深情安青应助嘉梦采纳,获得30
8秒前
大个应助木尧采纳,获得10
8秒前
老黑发布了新的文献求助10
8秒前
落叶完成签到 ,获得积分10
10秒前
HC完成签到 ,获得积分10
10秒前
10秒前
10秒前
333水完成签到,获得积分10
10秒前
Lucas应助琪哒采纳,获得10
11秒前
无情听南完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599540
求助须知:如何正确求助?哪些是违规求助? 4010119
关于积分的说明 12414946
捐赠科研通 3689740
什么是DOI,文献DOI怎么找? 2034025
邀请新用户注册赠送积分活动 1067273
科研通“疑难数据库(出版商)”最低求助积分说明 952284