Multi‐way analysis of flux distributions across multiple conditions

通量平衡分析 生物信息学 主成分分析 背景(考古学) 生物系统 多元统计 代谢通量分析 焊剂(冶金) 基因组 计算生物学 生物 计算机科学 数学 统计 化学 遗传学 基因 生物化学 古生物学 有机化学 新陈代谢
作者
Maikel P. H. Verouden,Richard A. Notebaart,Johan A. Westerhuis,Mariët J. van der Werf,Bas Teusink,Age K. Smilde
出处
期刊:Journal of Chemometrics [Wiley]
卷期号:23 (7-8): 406-420 被引量:18
标识
DOI:10.1002/cem.1238
摘要

Abstract With the availability of genome sequences of many organisms and information about gene‐protein‐reaction (GPR) associations with respect to these organisms genome‐scale metabolic networks can be reconstructed. In cellular systems biology these networks are used to model the behavior of metabolism in context of cell growth in terms of fluxes (reaction rates) through reactions in the network. Because the flux through each reaction can generally vary within a range, many flux distributions of the entire network are possible. However, since reactions are connected by common metabolites, reactions that are functionally coherent, are expected to highly correlate in terms of their flux value over different flux distributions. In this paper the genome‐scale network of a lactic acid bacterium, named Lactococcus lactis MG1363, is used to generate flux distributions for multiple in silico environmental conditions, mimicking laboratory growth conditions. The flux distributions per condition are used to calculate a correlation matrix for each condition. Subsequently the correlations between the reactions are analyzed in a multivariate approach across the in silico environmental conditions in order to identify correlations that are invariant (i.e. independent of the environment) and correlations that are variant across conditions (i.e. dependent of the environment). The applied multivariate methods are Parallel Factor Analysis (PARAFAC) and Principal Component Analysis (PCA). The discussion of the results of both methods leads to the question whether latent variable models are suitable analyzing this type of data. Copyright © 2009 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lbx完成签到,获得积分10
1秒前
4秒前
VAN喵完成签到,获得积分10
4秒前
小马甲应助lbx采纳,获得10
5秒前
DaSheng发布了新的文献求助30
5秒前
墨染星辰完成签到,获得积分10
7秒前
8秒前
寻123发布了新的文献求助10
8秒前
8秒前
Dreames完成签到,获得积分10
9秒前
柠檬味电子对儿完成签到,获得积分10
9秒前
Lucas应助112我的采纳,获得10
10秒前
11秒前
12秒前
12秒前
希望天下0贩的0应助hiipaige采纳,获得30
13秒前
xiaoyao完成签到,获得积分10
14秒前
14秒前
老阳发布了新的文献求助10
15秒前
少年完成签到,获得积分10
15秒前
罗彩明发布了新的文献求助10
17秒前
单山蘸水完成签到,获得积分10
17秒前
orixero应助绿野金采纳,获得10
18秒前
菠萝冰棒发布了新的文献求助10
18秒前
18秒前
zain发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
20秒前
20秒前
DDG完成签到,获得积分20
20秒前
搜集达人应助熊二浪采纳,获得10
21秒前
hyh完成签到,获得积分10
22秒前
科研通AI5应助Phalloidin采纳,获得10
22秒前
23秒前
112我的发布了新的文献求助10
23秒前
李健应助科研通管家采纳,获得10
23秒前
打打应助科研通管家采纳,获得10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882