Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

支持向量机 制动器 振动 断层(地质) 决策树 核(代数) 模式识别(心理学) 工程类 特征(语言学) 人工智能 特征选择 状态监测 计算机科学 汽车工程 数学 电气工程 物理 地质学 组合数学 哲学 量子力学 地震学 语言学
作者
R. Jegadeeshwaran,V. Sugumaran
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:52-53: 436-446 被引量:186
标识
DOI:10.1016/j.ymssp.2014.08.007
摘要

Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助ss采纳,获得10
刚刚
小琦琦发布了新的文献求助10
刚刚
tuanheqi应助可爱香槟采纳,获得20
3秒前
aa完成签到,获得积分10
3秒前
4秒前
请叫我风吹麦浪应助aaaaa采纳,获得10
4秒前
4秒前
4秒前
飞雪完成签到,获得积分10
5秒前
6秒前
7秒前
左丘秋尽应助文件撤销了驳回
7秒前
10秒前
yuyan完成签到,获得积分10
10秒前
11秒前
liii应助aaaaa采纳,获得10
12秒前
852应助小琦琦采纳,获得10
15秒前
烟花应助斯文冷梅采纳,获得10
15秒前
16秒前
Shennnn完成签到 ,获得积分20
17秒前
18秒前
刘忙完成签到,获得积分10
22秒前
22秒前
英姑应助Kevin Huang采纳,获得10
22秒前
22秒前
yy完成签到,获得积分10
22秒前
23秒前
23秒前
脑洞疼应助岁岁有采纳,获得10
23秒前
77完成签到,获得积分10
23秒前
大个应助干净的夜蓉采纳,获得10
24秒前
请叫我风吹麦浪应助he采纳,获得10
24秒前
惕守完成签到,获得积分10
24秒前
grip发布了新的文献求助10
25秒前
斯文冷梅发布了新的文献求助10
25秒前
fuje发布了新的文献求助10
26秒前
水獭完成签到 ,获得积分10
27秒前
27秒前
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420