Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

支持向量机 制动器 振动 断层(地质) 决策树 核(代数) 模式识别(心理学) 工程类 特征(语言学) 人工智能 特征选择 状态监测 计算机科学 汽车工程 数学 电气工程 物理 地质学 组合数学 哲学 量子力学 地震学 语言学
作者
R. Jegadeeshwaran,V. Sugumaran
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:52-53: 436-446 被引量:186
标识
DOI:10.1016/j.ymssp.2014.08.007
摘要

Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇发布了新的文献求助10
1秒前
1秒前
1秒前
WH发布了新的文献求助10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得20
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
科目三应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科研通AI6应助Isaac采纳,获得10
3秒前
多边形发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
cjk完成签到,获得积分10
4秒前
yu完成签到,获得积分10
4秒前
willroc完成签到,获得积分20
5秒前
szz完成签到,获得积分10
5秒前
5秒前
czagodlike完成签到,获得积分10
5秒前
www发布了新的文献求助10
7秒前
Anima完成签到,获得积分10
7秒前
小星星发布了新的文献求助10
7秒前
8秒前
vetXue完成签到,获得积分10
8秒前
8秒前
欧皇完成签到,获得积分20
10秒前
缘阿远关注了科研通微信公众号
12秒前
Z2H完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478612
求助须知:如何正确求助?哪些是违规求助? 4580220
关于积分的说明 14372701
捐赠科研通 4508514
什么是DOI,文献DOI怎么找? 2470765
邀请新用户注册赠送积分活动 1457522
关于科研通互助平台的介绍 1431425