Retrieval of tea polyphenol at leaf level using spectral transformation and multi-variate statistical approach

单变量 多酚 数学 山茶 主成分分析 线性判别分析 偏最小二乘回归 多元统计 统计 线性回归 逐步回归 回归分析 化学 植物 生物 生物化学 抗氧化剂
作者
Dibyendu Dutta,Prabir Kumar Das,Uttam Kumar Bhunia,Upasana Gitanjali Singh,Shalini Singh,Jaswant Raj Sharma,V. K. Dadhwal
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:36: 22-29 被引量:21
标识
DOI:10.1016/j.jag.2014.11.001
摘要

In the present study, field based hyperspectral data was used to estimate the tea (Camellia sinensis L.) polyphenol at Deha Tea garden of Assam state, India. Leaf reflectance spectra were first filtered for noise and then transformed into normalized and first derivative reflectance for further analysis. Stepwise discriminant analysis was carried out to select sensitive bands for a range of polyphenol concentration by minimizing the effects of other factors such as age of the bushes and management practices. The wavelengths at 358, 369, 484, 845, 916, 1387, 1420, 1435, 1621 and 2294 nm were identified as sensitive to tea polyphenol, among which 2294 nm was found to be the most recurring band. The noise removed selected bands, their transformed derivatives and principal components were regressed with the tea polyphenol using univariate and multi-variate analysis. In univariate analysis the correlation was very poor with RMSE more than 3.0. A significant improvement in R2 values were observed when multivariate analyses like stepwise multiple linear regression (SMLR) and partial least square regression (PLSR) was carried out. The PLSR of first derivative reflectance was most accurate (R2 = 0.81 and RMSE = 1.39 mg g−1) among all the uni- and multivariate analysis for predicting the polyphenol of fresh tea leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zcccjy完成签到 ,获得积分10
刚刚
3秒前
4秒前
4秒前
Ava应助零零散散采纳,获得10
4秒前
阿月完成签到,获得积分10
5秒前
5秒前
CYANjane完成签到,获得积分10
6秒前
笋尖266完成签到,获得积分10
6秒前
李爱国应助yyy采纳,获得10
6秒前
大气荟发布了新的文献求助10
7秒前
8秒前
是你的雨发布了新的文献求助10
8秒前
10秒前
TianY天翊发布了新的文献求助10
10秒前
布布爱吃炸鸡完成签到,获得积分10
11秒前
daihq3发布了新的文献求助10
12秒前
鱼雁发布了新的文献求助10
13秒前
13秒前
CodeCraft应助xl采纳,获得10
13秒前
薛洁洁的小糖应助laohu采纳,获得10
13秒前
14秒前
kc135完成签到,获得积分10
14秒前
14秒前
彭于彦祖应助云里采纳,获得30
14秒前
沉默千万发布了新的文献求助10
15秒前
一一发布了新的文献求助10
16秒前
叮叮完成签到 ,获得积分10
16秒前
TianY天翊完成签到,获得积分10
16秒前
冷酷的新梅完成签到,获得积分10
17秒前
森气发布了新的文献求助10
17秒前
小缸完成签到,获得积分10
19秒前
cc发布了新的文献求助10
19秒前
研友_VZG7GZ应助Invv采纳,获得10
20秒前
不知名的呆毛应助zjx采纳,获得10
21秒前
22秒前
愉快的老三完成签到,获得积分10
22秒前
一池清茶发布了新的文献求助10
23秒前
上官若男应助daihq3采纳,获得10
24秒前
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443647
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978440
捐赠科研通 2728341
什么是DOI,文献DOI怎么找? 1496490
科研通“疑难数据库(出版商)”最低求助积分说明 691648
邀请新用户注册赠送积分活动 689213