Retrieval of tea polyphenol at leaf level using spectral transformation and multi-variate statistical approach

单变量 多酚 数学 山茶 主成分分析 线性判别分析 偏最小二乘回归 多元统计 统计 线性回归 逐步回归 回归分析 化学 植物 生物 生物化学 抗氧化剂
作者
Dibyendu Dutta,Prabir Kumar Das,Uttam Kumar Bhunia,Upasana Gitanjali Singh,Shalini Singh,Jaswant Raj Sharma,V. K. Dadhwal
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:36: 22-29 被引量:21
标识
DOI:10.1016/j.jag.2014.11.001
摘要

In the present study, field based hyperspectral data was used to estimate the tea (Camellia sinensis L.) polyphenol at Deha Tea garden of Assam state, India. Leaf reflectance spectra were first filtered for noise and then transformed into normalized and first derivative reflectance for further analysis. Stepwise discriminant analysis was carried out to select sensitive bands for a range of polyphenol concentration by minimizing the effects of other factors such as age of the bushes and management practices. The wavelengths at 358, 369, 484, 845, 916, 1387, 1420, 1435, 1621 and 2294 nm were identified as sensitive to tea polyphenol, among which 2294 nm was found to be the most recurring band. The noise removed selected bands, their transformed derivatives and principal components were regressed with the tea polyphenol using univariate and multi-variate analysis. In univariate analysis the correlation was very poor with RMSE more than 3.0. A significant improvement in R2 values were observed when multivariate analyses like stepwise multiple linear regression (SMLR) and partial least square regression (PLSR) was carried out. The PLSR of first derivative reflectance was most accurate (R2 = 0.81 and RMSE = 1.39 mg g−1) among all the uni- and multivariate analysis for predicting the polyphenol of fresh tea leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助yuaasusanaann采纳,获得10
刚刚
刚刚
JamesPei应助Doo_lu采纳,获得10
3秒前
3秒前
6秒前
酷酷幻枫发布了新的文献求助20
6秒前
wu发布了新的文献求助10
7秒前
赘婿应助鬼火采纳,获得10
7秒前
7秒前
9秒前
afsdfds完成签到,获得积分10
10秒前
11秒前
魂逝之完成签到,获得积分10
11秒前
11秒前
安笙完成签到 ,获得积分10
12秒前
天天快乐应助链集采纳,获得20
12秒前
量子星尘发布了新的文献求助10
12秒前
iorpi完成签到,获得积分10
12秒前
老实向雁完成签到,获得积分10
13秒前
Dd18753801528关注了科研通微信公众号
14秒前
刘六刘完成签到,获得积分10
14秒前
14秒前
ZZ发布了新的文献求助10
15秒前
wwqc完成签到,获得积分0
15秒前
柯一一应助魏少爷采纳,获得10
15秒前
柯一一应助魏少爷采纳,获得10
15秒前
15秒前
hostghost发布了新的文献求助10
16秒前
lulu发布了新的文献求助10
16秒前
Jackson发布了新的文献求助10
16秒前
liang发布了新的文献求助20
16秒前
桃花落发布了新的文献求助10
17秒前
19秒前
19秒前
2478甯发布了新的文献求助10
19秒前
lanser完成签到,获得积分10
20秒前
22秒前
22秒前
22秒前
Owen应助acow采纳,获得10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980251
求助须知:如何正确求助?哪些是违规求助? 3524205
关于积分的说明 11220347
捐赠科研通 3261655
什么是DOI,文献DOI怎么找? 1800851
邀请新用户注册赠送积分活动 879332
科研通“疑难数据库(出版商)”最低求助积分说明 807234