Raman spectroscopy utilizing Fisher‐based feature selection combined with Support Vector Machines for the characterization of breast cell lines

过度拟合 人工智能 模式识别(心理学) 支持向量机 判别式 特征选择 计算机科学 降维 特征(语言学) 维数之咒 聚类分析 特征向量 特征提取 机器学习 数据挖掘 人工神经网络 语言学 哲学
作者
Michael B. Fenn,Vijay Pappu,Pando G. Georgeiv,Pãnos M. Pardalos
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:44 (7): 939-948 被引量:23
标识
DOI:10.1002/jrs.4309
摘要

Raman spectroscopy has the potential to significantly aid in the research and diagnosis of cancer. The information dense, complex spectra generate massive datasets in which subtle correlations may provide critical clues for biological analysis and pathological classification. Therefore, implementing advanced data mining techniques is imperative for complete, rapid and accurate spectral processing. Numerous recent studies have employed various data methods to Raman spectra for classification and biochemical analysis. Although, as Raman datasets from biological specimens are often characterized by high dimensionality and low sample numbers, many of these classification models are subject to overfitting. Furthermore, attempts to reduce dimensionality result in transformed feature spaces making the biological evaluation of significant and discriminative spectral features problematic. We have developed a novel data mining framework optimized for Raman datasets, called Fisher‐based Feature Selection Support Vector Machines (FFS‐SVM). This framework provides simultaneous supervised classification and user‐defined Fisher criterion‐based feature selection, reducing overfitting and directly yielding significant wavenumbers from the original feature space. Herein, we investigate five cancerous and non‐cancerous breast cell lines using Raman microspectroscopy and our unique FFS‐SVM framework. Our framework classification performance is then compared to several other frequently employed classification methods on four classification tasks. The four tasks were constructed by an unsupervised clustering method yielding the four different categories of cell line groupings (e.g. cancer vs non‐cancer) studied. FFS‐SVM achieves both high classification accuracies and the extraction of biologically significant features. The top ten most discriminative features are discussed in terms of cell‐type specific biological relevance. Our framework provides comprehensive cellular level characterization and could potentially lead to the discovery of cancer biomarker‐type information, which we have informally termed ‘Raman‐based spectral biomarkers’. The FFS‐SVM framework along with Raman spectroscopy will be used in future studies to investigate in‐situ dynamic biological phenomena. Copyright © 2013 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdasd完成签到,获得积分10
刚刚
刚刚
冷艳的孤晴完成签到,获得积分10
刚刚
默默安双发布了新的文献求助10
1秒前
科目三应助nightmare采纳,获得10
1秒前
蝉时雨完成签到,获得积分10
2秒前
棋士应助lili采纳,获得10
2秒前
why完成签到,获得积分10
3秒前
郭哥完成签到,获得积分10
3秒前
盐植物完成签到,获得积分10
3秒前
xxx发布了新的文献求助30
4秒前
JamesPei应助符宇新采纳,获得30
5秒前
发哥完成签到 ,获得积分10
5秒前
6秒前
雨萍完成签到,获得积分10
6秒前
6秒前
苏苏诺诺2023完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
jiayan111完成签到,获得积分10
9秒前
夹心发布了新的文献求助100
10秒前
10秒前
11秒前
啃猫爪发布了新的文献求助10
11秒前
Sarah悦完成签到,获得积分10
13秒前
gyjk发布了新的文献求助10
13秒前
潇洒的茗茗完成签到 ,获得积分10
13秒前
cnbhhhhh完成签到,获得积分10
14秒前
14秒前
曾云璐发布了新的文献求助10
15秒前
桃子爱学习完成签到,获得积分10
16秒前
ww发布了新的文献求助10
16秒前
畅快的刚完成签到,获得积分10
17秒前
18秒前
在水一方应助我我我采纳,获得10
19秒前
彭于晏应助啃猫爪采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
大模型应助wang采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954647
求助须知:如何正确求助?哪些是违规求助? 3500801
关于积分的说明 11101075
捐赠科研通 3231264
什么是DOI,文献DOI怎么找? 1786399
邀请新用户注册赠送积分活动 869980
科研通“疑难数据库(出版商)”最低求助积分说明 801751