清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Raman spectroscopy utilizing Fisher‐based feature selection combined with Support Vector Machines for the characterization of breast cell lines

过度拟合 人工智能 模式识别(心理学) 支持向量机 判别式 特征选择 计算机科学 降维 特征(语言学) 维数之咒 聚类分析 特征向量 特征提取 机器学习 数据挖掘 人工神经网络 语言学 哲学
作者
Michael B. Fenn,Vijay Pappu,Pando G. Georgeiv,Pãnos M. Pardalos
出处
期刊:Journal of Raman Spectroscopy [Wiley]
卷期号:44 (7): 939-948 被引量:23
标识
DOI:10.1002/jrs.4309
摘要

Raman spectroscopy has the potential to significantly aid in the research and diagnosis of cancer. The information dense, complex spectra generate massive datasets in which subtle correlations may provide critical clues for biological analysis and pathological classification. Therefore, implementing advanced data mining techniques is imperative for complete, rapid and accurate spectral processing. Numerous recent studies have employed various data methods to Raman spectra for classification and biochemical analysis. Although, as Raman datasets from biological specimens are often characterized by high dimensionality and low sample numbers, many of these classification models are subject to overfitting. Furthermore, attempts to reduce dimensionality result in transformed feature spaces making the biological evaluation of significant and discriminative spectral features problematic. We have developed a novel data mining framework optimized for Raman datasets, called Fisher‐based Feature Selection Support Vector Machines (FFS‐SVM). This framework provides simultaneous supervised classification and user‐defined Fisher criterion‐based feature selection, reducing overfitting and directly yielding significant wavenumbers from the original feature space. Herein, we investigate five cancerous and non‐cancerous breast cell lines using Raman microspectroscopy and our unique FFS‐SVM framework. Our framework classification performance is then compared to several other frequently employed classification methods on four classification tasks. The four tasks were constructed by an unsupervised clustering method yielding the four different categories of cell line groupings (e.g. cancer vs non‐cancer) studied. FFS‐SVM achieves both high classification accuracies and the extraction of biologically significant features. The top ten most discriminative features are discussed in terms of cell‐type specific biological relevance. Our framework provides comprehensive cellular level characterization and could potentially lead to the discovery of cancer biomarker‐type information, which we have informally termed ‘Raman‐based spectral biomarkers’. The FFS‐SVM framework along with Raman spectroscopy will be used in future studies to investigate in‐situ dynamic biological phenomena. Copyright © 2013 John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚倩倩发布了新的文献求助10
10秒前
自信放光芒~完成签到 ,获得积分10
10秒前
24K纯帅完成签到,获得积分10
14秒前
29秒前
32秒前
57秒前
1分钟前
飞飞飞完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
1分钟前
Tong完成签到,获得积分0
1分钟前
2分钟前
Andrew发布了新的文献求助10
2分钟前
迅速的月光完成签到 ,获得积分10
2分钟前
2分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
友好寻琴完成签到 ,获得积分10
2分钟前
郗妫完成签到,获得积分10
3分钟前
3分钟前
与共完成签到 ,获得积分10
3分钟前
美丽依波完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
林利芳完成签到 ,获得积分10
4分钟前
唔食鸡蛋黄完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
maodeshu应助科研通管家采纳,获得80
4分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
4分钟前
zz完成签到,获得积分10
5分钟前
沧海一粟米完成签到 ,获得积分10
5分钟前
hb完成签到,获得积分10
5分钟前
5分钟前
闪闪的谷梦完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
zhdjj完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339019
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627946
捐赠科研通 2646480
什么是DOI,文献DOI怎么找? 1449239
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162