促炎细胞因子
MAPK/ERK通路
细胞生物学
内皮干细胞
细胞粘附分子
细胞因子
信号转导
化学
内皮
生物
炎症
内分泌学
生物化学
免疫学
体外
作者
Tsuneo Ishizuka,Jennifer Cheng,Harpreet Singh,M. Del Vitto,Vijay L. Manthati,John R. Falck,Michal L. Schwartzman
标识
DOI:10.1124/jpet.107.130336
摘要
Endothelial dysfunction is associated with endothelial cell activation, i.e., up-regulation of surface cell adhesion molecules and the release of proinflammatory cytokines. 20-Hydroxyeicosatetraenoic acid (HETE), a major vasoactive eicosanoid in the microcirculation, has been implicated in the regulation of endothelial cell function through its angiogenic and pro-oxidative properties. We examined the effects of 20-HETE on endothelial cell activation in vitro. Cells transduced with adenovirus containing either CYP4A1 or CYP4A2 produced higher levels of 20-HETE, and they demonstrated increased expression levels of the adhesion molecule intercellular adhesion molecule (ICAM) (4–7-fold) and the oxidative stress marker 3-nitrotyrosine (2–3-fold) compared with cells transduced with control adenovirus. Treatment of cells with 20-HETE markedly increased levels of prostaglandin (PG) E2 and 8-epi-isoprostane PGF2α, commonly used markers of activation and oxidative stress, and most prominently, interleukin-8, a potent neutrophil chemotactic factor whose overproduction by the endothelium is a key feature of vascular injury. 20-HETE at nanomolar concentrations increased inhibitor of nuclear factor-κB phosphorylation by 2 to 5-fold within 5 min, which was followed with increased nuclear translocation of nuclear factor-κB (NF-κB). Likewise, 20-HETE activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway by stimulating phosphorylation of ERK1/2. Inhibition of NF-κB activation and inhibition of ERK1/2 phosphorylation inhibited 20-HETE-induced ICAM expression. It seems that 20-HETE triggers NF-κB and MAPK/ERK activation and that both signaling pathways participate in the cellular mechanisms by which 20-HETE activates vascular endothelial cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI