高光谱成像
信号子空间
子空间拓扑
人工智能
降维
模式识别(心理学)
噪音(视频)
计算机科学
均方误差
信号(编程语言)
信号处理
维数之咒
鉴定(生物学)
数学
算法
图像(数学)
统计
数字信号处理
植物
生物
计算机硬件
程序设计语言
作者
José M. Bioucas‐Dias,Juarez Vieira do Nascimento
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2008-08-01
卷期号:46 (8): 2435-2445
被引量:928
标识
DOI:10.1109/tgrs.2008.918089
摘要
Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.
科研通智能强力驱动
Strongly Powered by AbleSci AI