内分泌学
内科学
信号转导
醋酸甲孕酮
细胞粘附分子
一氧化氮
糖皮质激素受体
雌激素
糖皮质激素
生物
受体
细胞间粘附分子-1
VCAM-1
细胞生物学
医学
ICAM-1
作者
Tommaso Simoncini,Paolo Mannella,Letizia Fornari,Antonella Caruso,Monica Willis,Silvia Garibaldi,Chiara Baldacci,Andrea R. Genazzani
出处
期刊:Endocrinology
[The Endocrine Society]
日期:2004-09-10
卷期号:145 (12): 5745-5756
被引量:151
摘要
Abstract The conjugated equine estrogens-only arm of the Women’s Health Initiative trial, showing a trend toward protection from heart disease as opposed to women receiving also medroxyprogesterone acetate (MPA), strengthens the debate on the cardiovascular effects of progestins. We compared the effects of progesterone (P) or MPA on the synthesis of nitric oxide and on the expression of leukocyte adhesion molecules, characterizing the signaling events recruited by these compounds. Although P significantly increases nitric oxide synthesis via transcriptional and nontranscriptional mechanisms, MPA is devoid of such effects. Moreover, when used together with physiological estradiol (E2) concentrations, P potentiates E2 effects, whereas MPA impairs E2 signaling. These findings are observed both in isolated human endothelial cells as well as in vivo, in ovariectomized rat aortas. A marked difference in the recruitment of MAPK and phosphatidylinositol-3 kinase explains the divergent effects of the two gestagens. In addition, both P and MPA decrease the adhesiveness of endothelial cells for leukocytes when given alone or with estrogen. MPA is more potent than P in inhibiting the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. However, when administered together with physiological amounts of glucocorticoids, MPA (which also binds glucocorticoid receptor) markedly interferes with the hydrocortisone-dependent stabilization of the transcription factor nuclear factor κB and with the expression of adhesion molecules, acting as a partial glucocorticoid receptor antagonist. Our findings show significant differences in the signal transduction pathways recruited by P and MPA in endothelial cells, which may have relevant clinical implications.
科研通智能强力驱动
Strongly Powered by AbleSci AI