Self-Evaluation of Negative Symptoms: A Novel Tool to Assess Negative Symptoms

心理学 临床心理学 阴性症状 医学 精神科 精神病
作者
Sonia Dollfus,Cyril Mach,Rémy Morello
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
卷期号:42 (3): 571-578 被引量:114
标识
DOI:10.1093/schbul/sbv161
摘要

Many patients with schizophrenia have negative symptoms, but their evaluation is a challenge. Thus, standardized assessments are needed to facilitate identification of these symptoms. Many tools have been developed, but most are based on observer ratings. Self-evaluation can provide an additional outcome measure and allow patients to be more engaged in their treatment. The aim of this study was to present a novel tool, Self-evaluation of Negative Symptoms (SNS), and demonstrate its validity. Forty-nine patients with schizophrenia and schizoaffective disorders according to DSM-5 were evaluated. Cronbach's coefficient (α = 0.867) showed good internal consistency. Factor analysis extracted 2 factors (apathy and emotional) that accounted for 75.2% of the variance. The SNS significantly correlated with the Scale of Assessment of Negative Symptoms (r= 0.628) and the Clinician Global Impression on the severity of negative symptoms (r= 0.599), supporting good convergent validity. SNS scores did not correlate with level of insight (r= 0.008), Parkinsonism (r= 0.175) or Brief Psychiatric Rating Scale positive subscores (r= 0.253), which indicates good discriminant validity. The intrasubject reliability of the SNS revealed excellent intraclass correlation coefficients (ICC = 0.942). Taken together, the results show that the SNS has good psychometric properties and satisfactory acceptance by patients. The study also demonstrates the ability of patients with schizophrenia to accurately report their own experiences. Self-assessments of negative symptoms should be more widely employed in clinical practice because they may allow patients with schizophrenia to develop appropriate coping strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赞芽发布了新的文献求助10
刚刚
1秒前
1秒前
xiaowu完成签到,获得积分10
1秒前
织诗成锦完成签到,获得积分10
2秒前
科研通AI5应助文艺水蜜桃采纳,获得10
2秒前
2秒前
2秒前
科研通AI5应助BILNQPL采纳,获得10
3秒前
流白完成签到,获得积分10
3秒前
3秒前
Yolo完成签到,获得积分20
3秒前
YY应助胖豆采纳,获得10
4秒前
4秒前
jagger发布了新的文献求助10
4秒前
4秒前
5秒前
ChemistryZyh完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
充电宝应助朴素的士晋采纳,获得10
6秒前
6秒前
8秒前
调研昵称发布了新的文献求助10
8秒前
8秒前
8秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
8秒前
8秒前
CodeCraft应助Mumu采纳,获得10
9秒前
飘逸数据线完成签到,获得积分10
9秒前
111发布了新的文献求助10
9秒前
Gauss完成签到,获得积分0
9秒前
丘奇完成签到,获得积分10
9秒前
木子发布了新的文献求助10
9秒前
标致的方盒完成签到,获得积分10
9秒前
10秒前
致橡树完成签到,获得积分20
10秒前
Yolo发布了新的文献求助10
10秒前
yyy完成签到,获得积分20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762