Diagnosis of pancreatic carcinoma based on combined measurement of multiple serum tumor markers using artificial neural network analysis.

癌胚抗原 逻辑回归 接收机工作特性 医学 置信区间 内科学 肿瘤标志物 胰腺癌 CA19-9号 肿瘤科 胃肠病学 癌症
作者
Yingchi Yang,Hui Chen,Dong Wang,Wei Luo,Biyun Zhu,Zhongtao Zhang
出处
期刊:PubMed 卷期号:127 (10): 1891-6 被引量:4
链接
标识
摘要

Artificial neural network (ANN) has demonstrated the ability to assimilate information from multiple sources to enable the detection of subtle and complex patterns. In this research, we evaluated an ANN model in the diagnosis of pancreatic cancer using multiple serum markers.In this retrospective analysis, 913 serum specimens collected at the Department of General Surgery of Beijing Friendship Hospital were analyzed for carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 125 (CA125), and carcinoembryonic antigen (CEA). The three tumor marker values were used as inputs into an ANN and randomized into a training set of 658 (70.31% were malignant) and a test set of the remaining 255 samples (70.69% were malignant). The samples were also evaluated using a Logistic regression (LR) model.The ANN-derived composite index was superior to each of the serum tumor markers alone and the Logistic regression model. The areas under receiver operating characteristic curves (AUROC) was 0.905 (95% confidence Interval (CI) 0.868-0.942) for ANN, 0.812 (95% CI 0.762-0.863) for the Logistic regression model, 0.845 (95% CI 0.798-0.893) for CA19-9, 0.795 (95% CI 0.738-0.851) for CA125, and 0.800 (95% CI 0.746-0.854) for CEA. ANN analysis of multiple markers yielded a high level of diagnostic accuracy (83.53%) compared to LR (74.90%).The performance of ANN model in the diagnosis of pancreatic cancer is better than the single tumor marker and LR model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pcr163应助王珥玥采纳,获得100
2秒前
隐形曼青应助小六采纳,获得10
2秒前
2秒前
领导范儿应助君君采纳,获得10
3秒前
雪白元风完成签到 ,获得积分10
3秒前
李健的小迷弟应助三明治采纳,获得10
4秒前
4秒前
锦文完成签到,获得积分10
5秒前
7秒前
h胡发布了新的文献求助10
11秒前
漂亮的战斗机完成签到,获得积分10
11秒前
just flow发布了新的文献求助30
12秒前
14秒前
16秒前
彭于晏应助李桥溪采纳,获得50
16秒前
李爱国应助高超采纳,获得30
16秒前
16秒前
传奇3应助摘星数羊采纳,获得10
17秒前
18秒前
ZH发布了新的文献求助30
19秒前
19秒前
gms发布了新的文献求助10
19秒前
19秒前
精明蘑菇完成签到,获得积分10
19秒前
21秒前
感动的曼容应助h胡采纳,获得10
21秒前
碧蓝板栗发布了新的文献求助20
22秒前
23秒前
轻舟发布了新的文献求助10
23秒前
25秒前
25秒前
TOPLi发布了新的文献求助10
26秒前
27秒前
娟娟完成签到,获得积分10
27秒前
努巴完成签到,获得积分10
28秒前
怪胎完成签到,获得积分10
29秒前
lby发布了新的文献求助10
29秒前
29秒前
李桥溪发布了新的文献求助50
29秒前
天灰灰难回味完成签到,获得积分10
29秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613