TFEB
自噬
溶酶体
细胞生物学
生物发生
线粒体
PI3K/AKT/mTOR通路
氧化应激
自噬体
粒体自噬
内体
液泡
化学
细胞器
生物
细胞内
ATG5型
程序性细胞死亡
活性氧
内吞作用
生物化学
信号转导
细胞凋亡
酶
基因
作者
Xiaoli Zhang,Xiping Cheng,Lu Yu,Junsheng Yang,Raul Calvo,Samarjit Patnaik,Xin Hu,Qiong Gao,Meimei Yang,Maria Lawas,Markus Delling,Juan Marugán,Marc Ferrer,Haoxing Xu
摘要
Abstract Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes ‘host’ multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca 2+ -dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca 2+ release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1’s ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI