亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of Personal and Home Characteristics Associated with the Elemental Composition of PM2.5 in Indoor, Outdoor, and Personal Air in the RIOPA Study.

气动直径 环境科学 作文(语言) 微粒 环境卫生 环境化学 化学 医学 语言学 哲学 有机化学
作者
Patrick Ryan,Cole Brokamp,Zhihua Fan,M. Bhaskara Rao
出处
期刊:PubMed 卷期号: (185): 3-40 被引量:21
链接
标识
摘要

The complex mixture of chemicals and elements that constitute particulate matter (PM*) varies by season and geographic location because source contributors differ over time and place. The composition of PM having an aerodynamic diameter < 2.5 μm (PM2.5) is hypothesized to be responsible, in part, for its toxicity. Epidemiologic studies have identified specific components and sources of PM2.5 that are associated with adverse health outcomes. The majority of these studies use measures of outdoor concentrations obtained from one or a few central monitoring sites as a surrogate for measures of personal exposure. Personal PM2.5 (and its elemental composition), however, may be different from the PM2.5 measured at stationary outdoor sites. The objectives of this study were (1) to describe the relationships between the concentrations of various elements in indoor, outdoor, and personal PM2.5 samples, (2) to identify groups of individuals with similar exposures to mixtures of elements in personal PM2.5 and to examine personal and home characteristics of these groups, and (3) to evaluate whether concentrations of elements from outdoor PM2.5 samples are appropriate surrogates for personal exposure to PM2.5 and its elements and whether indoor PM2.5 concentrations and information about home characteristics improve the prediction of personal exposure. The objectives of the study were addressed using data collected as part of the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. The RIOPA study has previously measured the mass concentrations of PM2.5 and its elemental constituents during 48-hour concurrent indoor, outdoor (directly outside the home), and personal samplings in three urban areas (Los Angeles, California; Houston, Texas; and Elizabeth, New Jersey). The resulting data and information about personal and home characteristics (including air-conditioning use, nearby emission sources, time spent indoors, census-tract geography, air-exchange rates, and other information) for each RIOPA participant were downloaded from the RIOPA study database. We performed three sets of analyses to address the study aims. First, we conducted descriptive analyses to describe the relationships between elemental concentrations in the concurrently gathered indoor, outdoor, and personal air samples. We assessed the correlation between personal exposure and indoor concentrations as well as personal exposure and outdoor concentrations of each element and calculated ratios between them. In addition, we performed principal component analysis (PCA) and calculated principal component scores (PCSs) to examine the heterogeneity of the elemental composition and then tested whether the mixture of elements in indoor, outdoor, and personal PM2.5 was significantly different within each study site and across study sites. Secondly, we performed model-based clustering analysis to group RIOPA participants with similar exposures to mixtures of elements in personal PM2.5. We examined the association between cluster membership and the concentrations of elements in indoor and outdoor PM2.5 samples and personal and home characteristics. Finally, we developed a series of linear regression models and random forest models to examine the association between personal exposure to elements in PM2.5 and (1) outdoor measurements, (2) outdoor and indoor measurements, and (3) outdoor and indoor measurements and home characteristics. As we developed each model, the improvement in prediction of personal exposure when including additional information was assessed. Personal exposures to PM2.5 and to most elements were significantly correlated with both indoor and outdoor concentrations, although concentrations in personal samples frequently exceeded those of indoor and outdoor samples. In general, for most PM2.5 elements indoor concentrations were more highly correlated with personal exposure than were outdoor concentrations. PCA showed that the mixture of elements in indoor, outdoor, and personal PM2.5 varied significantly across sample types within each study site and also across study sites within each sample type. Using model-based clustering, we identified seven clusters of RIOPA participants whose personal PM2.5 samples had similar patterns of elemental composition. Using this approach, subsets of RIOPA participants were identified whose personal exposures to PM2.5 (and its elements) were significantly higher than their indoor and outdoor concentrations (and vice versa). The results of linear and random forest regression models were consistent with our correlation analyses and demonstrated that (1) indoor concentrations were more significantly associated with personal exposure than were outdoor concentrations and (2) participant reports of time spent at their home significantly modified many of the associations between indoor and personal concentrations. In linear regression models, the inclusion of indoor concentrations significantly improved the prediction of personal exposures to Ba, Ca, Cl, Cu, K, Sn, Sr, V, and Zn compared with the use of outdoor elemental concentrations alone. Including additional information on personal and home characteristics improved the prediction for only one element, Pb. Our results support the use of outdoor monitoring sites as surrogates of personal exposure for a limited number of individual elements associated with long-range transport and with a few local or indoor sources. Based on our PCA and clustering analyses, we concluded that the overall elemental composition of PM2.5 obtained at outdoor monitoring sites may not accurately represent the elemental composition of personal PM2.5. Although the data used in these analyses compared outdoor PM2.5 composition collected at the home with indoor and personal samples, our results imply that studies examining the complete elemental composition of PM2.5 should be cautious about using data from central outdoor monitoring sites because of the potential for exposure misclassification. The inclusion of personal and home characteristics only marginally improved the prediction of personal exposure for a small number of elements in PM2.5. We concluded that the additional cost and burden of indoor and personal sampling may be justified for studies examining elements because neither outdoor monitoring nor questionnaire data on home and personal characteristics were able to represent adequately the overall elemental composition of personal PM2.5.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
46秒前
缥缈月光完成签到 ,获得积分10
1分钟前
温不胜的破木吉他完成签到 ,获得积分10
1分钟前
souther完成签到,获得积分0
1分钟前
英俊的铭应助yishan采纳,获得10
1分钟前
1分钟前
安平完成签到,获得积分10
2分钟前
2分钟前
聪慧的凝海完成签到 ,获得积分10
2分钟前
Kate发布了新的文献求助10
2分钟前
小超人完成签到 ,获得积分10
2分钟前
3分钟前
orixero应助Ni采纳,获得10
3分钟前
3分钟前
Ni发布了新的文献求助10
3分钟前
赵一完成签到 ,获得积分10
3分钟前
一次完成签到,获得积分10
3分钟前
4分钟前
一次发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
yishan发布了新的文献求助10
4分钟前
4分钟前
4分钟前
米奇妙妙屋完成签到,获得积分10
5分钟前
5分钟前
搜集达人应助Claudia采纳,获得10
5分钟前
Bond完成签到 ,获得积分10
5分钟前
yishan发布了新的文献求助10
5分钟前
5分钟前
kkk完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
Claudia发布了新的文献求助10
5分钟前
无极微光应助热情奇异果采纳,获得20
6分钟前
6分钟前
6分钟前
嘻嘻完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564990
求助须知:如何正确求助?哪些是违规求助? 4649719
关于积分的说明 14689286
捐赠科研通 4591666
什么是DOI,文献DOI怎么找? 2519330
邀请新用户注册赠送积分活动 1491903
关于科研通互助平台的介绍 1463006