Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

代谢组学 生物 截形苜蓿 蛋白质组学 非生物胁迫 蛋白质组 豆类 莲藕 代谢组 基因组学 功能基因组学 生物技术 计算生物学 分子育种 共生 基因 植物 遗传学 基因组 生物信息学 细菌
作者
Abirami Ramalingam,Himabindu Kudapa,Lekha T. Pazhamala,Wolfram Weckwerth,Rajeev K. Varshney
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:6 被引量:122
标识
DOI:10.3389/fpls.2015.01116
摘要

The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important source of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signalling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signalling in legumes. In this review, several studies on proteomics and metabolomics in model and crop legumes have been discussed. Additionally, applications of advanced proteomics and metabolomics approaches have also been included in this review for future applications in legume research. The integration of these 'omic' approaches will greatly support the identification of accurate biomarkers in legume smart breeding programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CSUST科研一哥应助peiqi佩奇采纳,获得20
刚刚
thirteen完成签到 ,获得积分10
2秒前
2333完成签到,获得积分20
3秒前
含糊的白开水完成签到,获得积分20
4秒前
SunGuangkai发布了新的文献求助200
4秒前
杨凡发布了新的文献求助10
5秒前
peiqi佩奇完成签到,获得积分20
6秒前
科研通AI2S应助小绵羊采纳,获得10
9秒前
9秒前
lili发布了新的文献求助10
12秒前
12秒前
Ava应助xima采纳,获得10
13秒前
36456657应助勤恳冰彤采纳,获得10
14秒前
14秒前
Hou完成签到,获得积分10
15秒前
18秒前
19秒前
洁洁酱发布了新的文献求助10
20秒前
lili完成签到,获得积分10
20秒前
小恐龙完成签到,获得积分10
20秒前
21秒前
21秒前
ZC完成签到,获得积分10
23秒前
24秒前
hanyang965发布了新的文献求助10
24秒前
zhangshenlan完成签到 ,获得积分10
27秒前
xima发布了新的文献求助10
27秒前
syk应助彭佳丽采纳,获得10
30秒前
小羊完成签到,获得积分10
31秒前
34秒前
34秒前
俊逸的盛男完成签到 ,获得积分10
35秒前
li锂狸应助222520zys采纳,获得10
35秒前
36秒前
丘比特应助饱满的雨泽采纳,获得10
38秒前
李剑鸿发布了新的文献求助200
40秒前
消潇发布了新的文献求助30
41秒前
把握当下发布了新的文献求助10
41秒前
42秒前
神经蛙完成签到 ,获得积分10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309724
求助须知:如何正确求助?哪些是违规求助? 2942954
关于积分的说明 8511920
捐赠科研通 2618053
什么是DOI,文献DOI怎么找? 1430781
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649462