A Bayesian framework for estimating parameters of a generic toxicokinetic model for the bioaccumulation of organic chemicals by benthic invertebrates: Proof of concept with PCB153 and two freshwater species

生物累积 里巴利摇蚊 底栖区 钩虾 无脊椎动物 贝叶斯推理 贝叶斯概率 阿兹特卡海莱拉 生物 环境科学 生物系统 生态学 环境化学 端足类 统计 数学 化学 甲壳动物 幼虫 吸浆虫
作者
Aude Ratier,Christelle Lopes,P Labadie,Hélène Budzinski,Nicolas Delorme,Davide Degli Esposti,Laurent Peluhet,Olivier Geffard,Marc Babut
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:180: 33-42 被引量:19
标识
DOI:10.1016/j.ecoenv.2019.04.080
摘要

Toxicokinetic (TK) models are relevant and widely used to predict chemical concentrations in biological organisms. The importance of dietary uptake for aquatic invertebrates has been increasingly assessed in recent years. However, the model parameters are estimated on limited specific laboratory data sets that are bounded by several uncertainties. The aim of this study was to implement a Bayesian framework for simultaneously estimating the parameters of a generic TK model for benthic invertebrate species from all data collected. We illustrate our approach on the bioaccumulation of PCB153 by two species with different life traits and therefore exposure routes: Chironomus riparius larvae exposed to spiked sediment for 7 days and Gammarus fossarum exposed to spiked sediment and/or leaves for 7 days and then transferred to a clean media for 7 more days. The TK models assuming first-order kinetics were fitted to the data using Bayesian inference. The median model predictions and their 95% credibility intervals showed that the model fit the data well. From a methodological point of view, this paper illustrates that simultaneously estimating all model parameters from all available data by Bayesian inference, while considering the correlation between parameters and different types of data, is a real added value for TK modeling. Moreover, we demonstrated the ability of a generic TK model considering uptake and elimination routes as modules to add according to the availability of the data measured. From an ecotoxicological point of view, we show differences in PCB153 bioaccumulation between chironomids and gammarids, explained by the different life traits of these two organisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助爽歪歪采纳,获得10
1秒前
2秒前
nt完成签到,获得积分10
2秒前
2秒前
Murphy完成签到,获得积分10
3秒前
kiki完成签到 ,获得积分10
3秒前
大模型应助CYYDNDB采纳,获得10
4秒前
今后应助王jj采纳,获得10
5秒前
666发布了新的文献求助10
5秒前
阳佟曼云发布了新的文献求助10
7秒前
7秒前
鲁卓林发布了新的文献求助10
7秒前
思源应助小鱼歪优采纳,获得10
8秒前
firmalter发布了新的文献求助10
8秒前
去码头整点薯条完成签到 ,获得积分10
9秒前
angelalxj发布了新的文献求助10
10秒前
13秒前
15秒前
欣喜面包完成签到 ,获得积分10
16秒前
王jj发布了新的文献求助10
16秒前
刘诗七完成签到,获得积分10
18秒前
魁梧的沛萍完成签到 ,获得积分10
18秒前
咸鱼打滚发布了新的文献求助10
19秒前
科研通AI6应助星星点点1234采纳,获得10
20秒前
21秒前
zhenyu0430发布了新的文献求助10
22秒前
顾羽完成签到,获得积分10
23秒前
24秒前
脑洞疼应助文静的海采纳,获得10
24秒前
24秒前
kiwi完成签到 ,获得积分10
24秒前
Akim应助王三岁采纳,获得10
25秒前
25秒前
浣熊发布了新的文献求助30
26秒前
兴奋千秋发布了新的文献求助10
26秒前
26秒前
丁可发布了新的文献求助10
30秒前
32秒前
瑞仔完成签到,获得积分10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225359
求助须知:如何正确求助?哪些是违规求助? 4397026
关于积分的说明 13685643
捐赠科研通 4261608
什么是DOI,文献DOI怎么找? 2338513
邀请新用户注册赠送积分活动 1335950
关于科研通互助平台的介绍 1291890