大肠杆菌
基因组
生物
遗传学
微生物学
化学
基因
作者
Julius Fredens,Kaihang Wang,Daniel de la Torre,Louise F. H. Funke,Wesley E. Robertson,Yonka Christova,Tiongsun Chia,Wolfgang H. Schmied,Daniel L. Dunkelmann,Václav Beránek,Chayasith Uttamapinant,Andres Gonzalez Llamazares,Thomas Elliott,Jason W. Chin
出处
期刊:Nature
[Springer Nature]
日期:2019-05-15
卷期号:569 (7757): 514-518
被引量:418
标识
DOI:10.1038/s41586-019-1192-5
摘要
Nature uses 64 codons to encode the synthesis of proteins from the genome, and chooses 1 sense codon—out of up to 6 synonyms—to encode each amino acid. Synonymous codon choice has diverse and important roles, and many synonymous substitutions are detrimental. Here we demonstrate that the number of codons used to encode the canonical amino acids can be reduced, through the genome-wide substitution of target codons by defined synonyms. We create a variant of Escherichia coli with a four-megabase synthetic genome through a high-fidelity convergent total synthesis. Our synthetic genome implements a defined recoding and refactoring scheme—with simple corrections at just seven positions—to replace every known occurrence of two sense codons and a stop codon in the genome. Thus, we recode 18,214 codons to create an organism with a 61-codon genome; this organism uses 59 codons to encode the 20 amino acids, and enables the deletion of a previously essential transfer RNA. High-fidelity convergent total synthesis is used to produce Escherichia coli with a 61-codon synthetic genome that uses 59 codons to encode all of the canonical amino acids.
科研通智能强力驱动
Strongly Powered by AbleSci AI