Mechanistic understanding of intergranular cracking in NCM cathode material: mesoscale simulation with three-dimensional microstructure

材料科学 晶间腐蚀 微观结构 开裂 脆性 复合材料 阴极 缩进 极限抗拉强度 粘附 化学 物理化学
作者
Kyoungmin Min,Eunseog Cho
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:20 (42): 27115-27124 被引量:14
标识
DOI:10.1039/c8cp04927k
摘要

Intergranular cracking in the agglomerated form of secondary particles has been regarded as a major cause for mechanical degradation in layered oxide cathode materials for Li-ion batteries, but its detailed mechanistic origin linked to the mechanical properties of these materials is still unknown. In this study, a mesoscale simulation based on the description of the interaction between primary particles is established by combining the model of the shifted-force Lennard-Jones potential and granular Hertzian model to construct the microstructure of secondary particles of cathode materials. The optimized parameters for each model are developed to compute the mechanical properties based on the response from nano-indentation and uniaxial tensile tests. Furthermore, the adhesion between the primary particles is modified to examine their sensitivity to different modes of deformations. The results show that under tension, an increase in adhesion can significantly strengthen the structure along with increase in brittleness, whereas the response from the localized compression (nano-indentation) is shown to be much less sensitive. In addition, the structural changes during repeated volume expansion/contraction induced from electrochemical cycling are investigated. The results indicate that enhancing particle adhesion can prevent the propagation of intergranular cracking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助yigu采纳,获得10
刚刚
刚刚
Hu完成签到 ,获得积分10
2秒前
liuyan432完成签到,获得积分10
2秒前
cc完成签到,获得积分10
2秒前
易烊千玺完成签到,获得积分20
2秒前
哒哒哒哒完成签到,获得积分10
2秒前
3秒前
李健应助陶醉觅夏采纳,获得10
4秒前
4秒前
独特凡松完成签到,获得积分10
4秒前
木笔朱瑾完成签到 ,获得积分10
5秒前
Rinohalt完成签到,获得积分10
5秒前
6秒前
孙梁子完成签到,获得积分10
6秒前
核桃花生奶兔完成签到 ,获得积分10
7秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
8秒前
9秒前
孙奕发布了新的文献求助10
9秒前
xiaotian_fan完成签到,获得积分10
9秒前
11秒前
11秒前
科研通AI2S应助laochen采纳,获得10
11秒前
盘尼西林发布了新的文献求助10
11秒前
迟大猫应助专心搞学术采纳,获得10
12秒前
14秒前
孙奕完成签到,获得积分10
15秒前
15秒前
俟天晴完成签到,获得积分10
15秒前
淡定问芙发布了新的文献求助30
16秒前
18秒前
Lewis完成签到,获得积分10
19秒前
orixero应助TranYan采纳,获得10
19秒前
猪猪hero发布了新的文献求助10
21秒前
22秒前
今后应助333采纳,获得10
23秒前
pu发布了新的文献求助10
24秒前
Akim应助梓榆采纳,获得10
25秒前
劼大大完成签到,获得积分10
25秒前
最优解完成签到 ,获得积分20
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794