Effect of Al-Doping on the Electrochemical Performances of O3-Type Nanmc Cathode Material for Sodium-Ion Batteries

材料科学 电解质 阴极 电池(电) 锂(药物) 兴奋剂 电化学 离子 溶解 氧化还原 氧化物 过渡金属 化学工程 电极 无机化学 光电子学 化学 冶金 功率(物理) 工程类 热力学 物理化学 有机化学 内分泌学 物理 催化作用 医学 生物化学
作者
Vipin Kumar,S.K. Ghosh,Sushanta Biswas,Surendra K. Martha
出处
期刊:Meeting abstracts 卷期号:MA2020-01 (2): 370-370
标识
DOI:10.1149/ma2020-012370mtgabs
摘要

The emergence of Lithium-ion technology as a primary power source has revolutionized the global electric vehicle battery market, the high abundance, uniform geological distribution and similar electrochemistry of sodium, making sodium-ion batteries (NIBs) a promising LIB supplement in the large-scale energy storage applications 1,2 . Layered sodium transition metal oxide of O3-NaMO 2 -type such as NaCoO 2 , NaMnO 2 , NaNiO 2, and NaFeO 2, etc. have been investigated to show reversible Na-ion insertion within the applied potential limit 2,3 . They suffer from their characteristic disadvantages, such as low redox potential of NaCoO 2 , complex phase transition of NaNiO 2 , electrolyte dissolution of Mn +2 of NaMnO 2 and rapid capacity fading of NaFeO 2 4,5 . Therefore, the strategy of cation mixing to develop the multi-metallic oxides has been explored well to utilize the synergistic effects of all metal ions. O3-type layered NaNi 0.5 Mn 0.3 Co 0.2 O 2 is considered as one of the most promising cathode materials for NIBs. O3-NaNi 0.5 Mn 0.3 Co 0.2 O 2 as cathode material for SIBs delivers a 1 st cycle capacity of 135 mAh g -1 with the 37% capacity fade at the end of 200 th cycle at C/10 current rate. NaNi 0.5 Mn 0.3 Co 0.2 O 2 , synthesized by using simple solution combustion method followed by thermal treatment delivers an initial discharge capacity of 135 mAh g -1 at C/10 rate, which indicates a reversible insertion of ~50% sodium. However, it loses 37% of the initial capacity after 200 cycles due to structural deformation during sodiation/de-sodiation process. The irreversible phase transition due to structural deformation leads to sluggish kinetics, rapid capacity fade, and poor rate performance; thereby limit its wide practical applications. To mitigate structural instability and rapid capacity fading, doping of main-group metals within transition metal layers is an effective strategy. 6-8 The partial substitution of Co 3+ (0.545 Å) by Al 3+ (0.535 Å) ions in the transition-metal layer to synthesize NaNi 0.5 Mn 0.3 Co 0.2-x Al x (x=0.01, 0.02, 0.05) by solution combustion technique is an effective strategy to address the issue of structural deformation and thus to improve the performance of NaNi 0.5 Mn 0.3 Co 0.2 O 2 . The O3-type structure of the synthesized material with the R-3m space group was confirmed from XRD analysis. The synthesized materials show morphology of hexagonal plate-like primary structures aggregated to form secondary clusters. The galvanostatic charge-discharge studies carried out at C/10 rate in the voltage range of 2.0-4.0 V shows that the composition with an overall 2% Al doping (x=0.02) delivers much better capacity retention (~28% improvement than pristine NaNMC) even after 100 cycles than the other compositions studied (1% (x=0.01) and 5% (x=0.05) Al doping). Moreover, the NaNi 0.5 Mn 0.3 Co 0.18 Al 0.02 O 2 shows the good capacity of around 80 mAhg -1 even at high C-rate of 5C rate, which is almost 72% of the initial capacity at C/10 rate. The improved electrochemical performance of the Al-substituted NaNMC is attributed to the enhanced structural stability of the sodium layered transition metal oxide achieved after the partial substitution of Co 3+ by Al 3+ ion. References 1. G. Zubi, R. Dufo-López, M. Carvalho and G. Pasaoglu, Renewable and Sustainable Energy Reviews, 89, 292 (2018). 2. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, Chem. Rev., 114, 11636 (2014). 3. J. Y. Hwang, C. S Yoon, I. Belharouak, and Y.K Sun, J. Mater. Chem. A , 4 , 17952 (2016). 4. P. Vassilaras, A. J. Toumar, and G. Ceder, Electrochem. Commun., 38, 79 (2014). 5. M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, Energy Environ. Sci., 8 , 81 (2015). 6. M. Sathiya, K. Hemalatha, K. Ramesha, J-M. Tarascon, and A. S. Prakash, Chem. Mater, 24 , 1846 (2012). 7. T. Hwang, J.-H. Lee, S. H. Choi, R.-G. Oh, D. Kim, M. Cho, W. Cho, and M.-S. Park, ACS Appl. Mater. Interfaces, 11 , 30894 (2019). 8. H. Wang, R. Gao, Z. Li, L. Sun, Z. Hu, and X. Liu, Inorg Chem ., 57, 5249 (2018).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SJD完成签到,获得积分0
刚刚
小猪鱿鱼发布了新的文献求助10
3秒前
香蕉觅云应助落寞银耳汤采纳,获得10
4秒前
5秒前
yuyu完成签到 ,获得积分10
5秒前
Tinsulfides完成签到,获得积分10
7秒前
懒熊发布了新的文献求助10
10秒前
嗒嗒发布了新的文献求助10
11秒前
liz关注了科研通微信公众号
14秒前
Yacon完成签到 ,获得积分10
18秒前
俺村俺最牛完成签到,获得积分10
23秒前
24秒前
26秒前
CMCM发布了新的文献求助30
30秒前
31秒前
32秒前
33秒前
34秒前
34秒前
35秒前
舒心靖琪完成签到 ,获得积分10
36秒前
酷波er应助三水采纳,获得10
36秒前
刘子龙发布了新的文献求助10
36秒前
37秒前
liz发布了新的文献求助10
37秒前
薛定谔的猫完成签到 ,获得积分10
37秒前
无花果应助duxy采纳,获得10
37秒前
38秒前
11完成签到,获得积分20
40秒前
古卡可可完成签到,获得积分10
40秒前
打打应助qiu采纳,获得10
41秒前
任性访风完成签到,获得积分10
43秒前
44秒前
46秒前
duxy完成签到,获得积分20
46秒前
三水发布了新的文献求助10
49秒前
雨堂完成签到 ,获得积分10
49秒前
duxy发布了新的文献求助10
49秒前
49秒前
星辰大海应助爱笑的万天采纳,获得10
54秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673458
求助须知:如何正确求助?哪些是违规求助? 3229111
关于积分的说明 9784159
捐赠科研通 2939678
什么是DOI,文献DOI怎么找? 1611198
邀请新用户注册赠送积分活动 760859
科研通“疑难数据库(出版商)”最低求助积分说明 736290