Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

机器学习 人工智能 计算机科学 肿瘤浸润淋巴细胞 标准化 分割 癌症 医学 免疫疗法 内科学 操作系统
作者
Klaus‐Robert Müller,Klaus‐Robert Müller,Alexander Binder,Michael Bockmayr,Miriam Hägele,Philipp Seegerer,Stephan Wienert,Giancarlo Pruneri,S. de Maria,Sunil Badve,Stefan Michiels,TO Nielsen,Sylvia Adams,Peter Savas,W. Fraser Symmans,Scooter Willis,Tina Gruosso,M. Park,Benjamin Haibe‐Kains,Brandon D. Gallas,Alastair M. Thompson,Ian A. Cree,Christos Sotiriou,Cinzia Solinas,Matthias Preusser,Stephen M. Hewitt,David L. Rimm,Giuseppe Viale,Sherene Loi,Sibylle Loibl,Rodrigo Salgado,Carsten Denkert
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:52: 151-157 被引量:137
标识
DOI:10.1016/j.semcancer.2018.07.001
摘要

The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qqa发布了新的文献求助10
1秒前
子寒发布了新的文献求助10
1秒前
wenbo完成签到,获得积分0
1秒前
花卷完成签到,获得积分10
2秒前
谁在深海的大菠萝里完成签到,获得积分20
2秒前
快快跑咯发布了新的文献求助10
2秒前
愉快的代玉完成签到,获得积分10
2秒前
bkagyin应助mingcheng采纳,获得10
3秒前
默默的鹏笑完成签到,获得积分10
3秒前
3秒前
4秒前
WKY完成签到,获得积分10
4秒前
CodeCraft应助Frank采纳,获得10
5秒前
yi发布了新的文献求助10
5秒前
yian007发布了新的文献求助10
5秒前
5秒前
科研通AI6应助成666采纳,获得10
5秒前
6秒前
pp发布了新的文献求助10
7秒前
7秒前
邓佳鑫Alan应助天空之城采纳,获得10
7秒前
7秒前
7秒前
熙怡完成签到 ,获得积分10
7秒前
丘比特应助正直帆布鞋采纳,获得10
8秒前
牛大壮完成签到,获得积分10
8秒前
浮沫发布了新的文献求助10
8秒前
Lojong完成签到,获得积分10
8秒前
稚生w发布了新的文献求助10
9秒前
9秒前
852应助虞虞采纳,获得10
10秒前
10秒前
10秒前
Jackson发布了新的文献求助10
10秒前
10秒前
10秒前
wzh完成签到,获得积分10
10秒前
11秒前
CipherSage应助科研雷采纳,获得10
11秒前
学术羊完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661318
求助须知:如何正确求助?哪些是违规求助? 4838264
关于积分的说明 15095308
捐赠科研通 4820082
什么是DOI,文献DOI怎么找? 2579723
邀请新用户注册赠送积分活动 1534013
关于科研通互助平台的介绍 1492767