Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

机器学习 人工智能 计算机科学 肿瘤浸润淋巴细胞 标准化 分割 癌症 医学 免疫疗法 操作系统 内科学
作者
Klaus‐Robert Müller,Klaus‐Robert Müller,Alexander Binder,Michael Bockmayr,Miriam Hägele,Philipp Seegerer,Stephan Wienert,Giancarlo Pruneri,S. de Maria,Sunil Badve,Stefan Michiels,TO Nielsen,Sylvia Adams,Peter Savas,W. Fraser Symmans,Scooter Willis,Tina Gruosso,M. Park,Benjamin Haibe‐Kains,Brandon D. Gallas,Alastair M. Thompson,Ian A. Cree,Christos Sotiriou,Cinzia Solinas,Matthias Preusser,Stephen M. Hewitt,David L. Rimm,Giuseppe Viale,Sherene Loi,Sibylle Loibl,Rodrigo Salgado,Carsten Denkert
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:52: 151-157 被引量:137
标识
DOI:10.1016/j.semcancer.2018.07.001
摘要

The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssss完成签到,获得积分10
刚刚
刚刚
顷禾发布了新的文献求助10
刚刚
1秒前
善学以致用应助L112233采纳,获得10
1秒前
1秒前
裴彤发布了新的文献求助10
1秒前
一缕阳光完成签到,获得积分10
1秒前
1秒前
小二郎应助天气晴朗采纳,获得30
2秒前
zyzy1996发布了新的文献求助10
2秒前
2秒前
chase完成签到,获得积分10
2秒前
实验耗材完成签到 ,获得积分10
2秒前
3秒前
3秒前
JYP发布了新的文献求助10
4秒前
慕青应助qqq采纳,获得30
4秒前
sy发布了新的文献求助10
4秒前
科研通AI2S应助感动新烟采纳,获得10
4秒前
wxx336完成签到,获得积分10
4秒前
隐形曼青应助怡然的夏之采纳,获得10
4秒前
科研通AI6应助的的的维尔采纳,获得10
5秒前
5秒前
6秒前
脑洞疼应助水泥酱采纳,获得10
6秒前
6秒前
6秒前
Oops完成签到,获得积分10
6秒前
6秒前
维语发布了新的文献求助10
6秒前
wxy2011完成签到 ,获得积分10
6秒前
韩保晨发布了新的文献求助10
6秒前
悦耳的舞仙完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
奥格诺完成签到,获得积分10
7秒前
明明发布了新的文献求助10
8秒前
宋晓静发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590