亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

机器学习 人工智能 计算机科学 肿瘤浸润淋巴细胞 标准化 分割 癌症 医学 免疫疗法 操作系统 内科学
作者
Klaus‐Robert Müller,Klaus‐Robert Müller,Alexander Binder,Michael Bockmayr,Miriam Hägele,Philipp Seegerer,Stephan Wienert,Giancarlo Pruneri,S. de Maria,Sunil Badve,Stefan Michiels,TO Nielsen,Sylvia Adams,Peter Savas,W. Fraser Symmans,Scooter Willis,Tina Gruosso,M. Park,Benjamin Haibe‐Kains,Brandon D. Gallas,Alastair M. Thompson,Ian A. Cree,Christos Sotiriou,Cinzia Solinas,Matthias Preusser,Stephen M. Hewitt,David L. Rimm,Giuseppe Viale,Sherene Loi,Sibylle Loibl,Rodrigo Salgado,Carsten Denkert
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:52: 151-157 被引量:137
标识
DOI:10.1016/j.semcancer.2018.07.001
摘要

The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助chloe采纳,获得30
2秒前
権権发布了新的文献求助10
3秒前
7秒前
ramsey33完成签到 ,获得积分10
13秒前
yhw发布了新的文献求助10
17秒前
34秒前
英姑应助権権采纳,获得10
53秒前
1分钟前
注恤明完成签到,获得积分10
1分钟前
李健的小迷弟应助Jiong采纳,获得10
1分钟前
1分钟前
権権发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jiong发布了新的文献求助10
1分钟前
1分钟前
CipherSage应助百里幻竹采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
2分钟前
2分钟前
Michelle发布了新的文献求助10
2分钟前
Michelle完成签到,获得积分20
2分钟前
科研通AI2S应助Michelle采纳,获得10
2分钟前
邹醉蓝发布了新的文献求助10
2分钟前
chloe关注了科研通微信公众号
2分钟前
2分钟前
3分钟前
chloe发布了新的文献求助30
3分钟前
事上炼应助Michelle采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
星辰大海应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
Elen1987发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538710
求助须知:如何正确求助?哪些是违规求助? 4625778
关于积分的说明 14596871
捐赠科研通 4566436
什么是DOI,文献DOI怎么找? 2503311
邀请新用户注册赠送积分活动 1481402
关于科研通互助平台的介绍 1452772