Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

机器学习 人工智能 计算机科学 肿瘤浸润淋巴细胞 标准化 分割 癌症 医学 免疫疗法 内科学 操作系统
作者
Klaus‐Robert Müller,Klaus‐Robert Müller,Alexander Binder,Michael Bockmayr,Miriam Hägele,Philipp Seegerer,Stephan Wienert,Giancarlo Pruneri,S. de Maria,Sunil Badve,Stefan Michiels,TO Nielsen,Sylvia Adams,Peter Savas,W. Fraser Symmans,Scooter Willis,Tina Gruosso,M. Park,Benjamin Haibe‐Kains,Brandon D. Gallas,Alastair M. Thompson,Ian A. Cree,Christos Sotiriou,Cinzia Solinas,Matthias Preusser,Stephen M. Hewitt,David L. Rimm,Giuseppe Viale,Sherene Loi,Sibylle Loibl,Rodrigo Salgado,Carsten Denkert
出处
期刊:Seminars in Cancer Biology [Elsevier BV]
卷期号:52: 151-157 被引量:137
标识
DOI:10.1016/j.semcancer.2018.07.001
摘要

The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bliss完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
LRH完成签到,获得积分10
1秒前
cnbhhhhh完成签到,获得积分10
2秒前
2秒前
小懒虫完成签到,获得积分20
2秒前
2秒前
3秒前
沉默思山完成签到,获得积分10
3秒前
Deeki发布了新的文献求助10
3秒前
3秒前
搜集达人应助Tom采纳,获得10
4秒前
咸鱼发布了新的文献求助10
5秒前
SYLH应助刺猬采纳,获得10
5秒前
1234完成签到,获得积分20
5秒前
有思想发布了新的文献求助10
5秒前
TuTuesday发布了新的文献求助10
5秒前
愉快浩宇完成签到,获得积分10
5秒前
知许解夏应助呆萌朝雪采纳,获得10
7秒前
望北楼主发布了新的文献求助10
7秒前
7秒前
小雨点发布了新的文献求助10
7秒前
阳光的安南完成签到,获得积分10
7秒前
8秒前
JamesPei应助孤独梦安采纳,获得10
8秒前
小白完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
壮观复天完成签到 ,获得积分10
8秒前
曹馨月关注了科研通微信公众号
9秒前
9秒前
研友_8Y26PL完成签到,获得积分10
9秒前
dong应助钙离子采纳,获得10
9秒前
强健的梦蕊完成签到 ,获得积分10
10秒前
10秒前
22发布了新的文献求助10
10秒前
11秒前
乐观寻雪完成签到 ,获得积分10
12秒前
bai完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255