Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning

机器学习 人工智能 计算机科学 肿瘤浸润淋巴细胞 标准化 分割 癌症 医学 免疫疗法 操作系统 内科学
作者
Klaus‐Robert Müller,Klaus‐Robert Müller,Alexander Binder,Michael Bockmayr,Miriam Hägele,Philipp Seegerer,Stephan Wienert,Giancarlo Pruneri,S. de Maria,Sunil Badve,Stefan Michiels,TO Nielsen,Sylvia Adams,Peter Savas,W. Fraser Symmans,Scooter Willis,Tina Gruosso,M. Park,Benjamin Haibe‐Kains,Brandon D. Gallas,Alastair M. Thompson,Ian A. Cree,Christos Sotiriou,Cinzia Solinas,Matthias Preusser,Stephen M. Hewitt,David L. Rimm,Giuseppe Viale,Sherene Loi,Sibylle Loibl,Rodrigo Salgado,Carsten Denkert
出处
期刊:Seminars in Cancer Biology [Elsevier]
卷期号:52: 151-157 被引量:137
标识
DOI:10.1016/j.semcancer.2018.07.001
摘要

The extent of tumor-infiltrating lymphocytes (TILs), along with immunomodulatory ligands, tumor-mutational burden and other biomarkers, has been demonstrated to be a marker of response to immune-checkpoint therapy in several cancers. Pathologists have therefore started to devise standardized visual approaches to quantify TILs for therapy prediction. However, despite successful standardization efforts visual TIL estimation is slow, with limited precision and lacks the ability to evaluate more complex properties such as TIL distribution patterns. Therefore, computational image analysis approaches are needed to provide standardized and efficient TIL quantification. Here, we discuss different automated TIL scoring approaches ranging from classical image segmentation, where cell boundaries are identified and the resulting objects classified according to shape properties, to machine learning-based approaches that directly classify cells without segmentation but rely on large amounts of training data. In contrast to conventional machine learning (ML) approaches that are often criticized for their "black-box" characteristics, we also discuss explainable machine learning. Such approaches render ML results interpretable and explain the computational decision-making process through high-resolution heatmaps that highlight TILs and cancer cells and therefore allow for quantification and plausibility checks in biomedical research and diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江江发布了新的文献求助30
1秒前
不加香菜发布了新的文献求助10
2秒前
2秒前
dyuephy完成签到,获得积分10
2秒前
爆米花应助STX采纳,获得10
4秒前
6秒前
善学以致用应助戚鹊采纳,获得10
6秒前
6秒前
8秒前
8秒前
8秒前
自信彩虹发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
13秒前
dada发布了新的文献求助10
13秒前
月军完成签到,获得积分10
14秒前
kkk发布了新的文献求助10
14秒前
寻雪完成签到,获得积分10
15秒前
健忘幻儿完成签到 ,获得积分10
16秒前
蹦蹦月亮发布了新的文献求助10
16秒前
恋晴完成签到 ,获得积分10
18秒前
B612小行星完成签到 ,获得积分10
19秒前
Hello应助戈壁滩的鱼采纳,获得10
21秒前
小马甲应助自然的钻石采纳,获得10
21秒前
人如果发布了新的文献求助10
23秒前
23秒前
24秒前
瑾瑾完成签到,获得积分10
25秒前
蹦蹦月亮完成签到,获得积分10
26秒前
西瓜汁完成签到,获得积分10
26秒前
华仔应助坚定岂愈采纳,获得10
27秒前
27秒前
prosmail发布了新的文献求助10
28秒前
30秒前
ayu发布了新的文献求助10
30秒前
32秒前
彩色傲柏发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147946
求助须知:如何正确求助?哪些是违规求助? 2798939
关于积分的说明 7832669
捐赠科研通 2456017
什么是DOI,文献DOI怎么找? 1307045
科研通“疑难数据库(出版商)”最低求助积分说明 628043
版权声明 601620