数学
属
连接(主束)
可积系统
超椭圆曲线
序列(生物学)
超椭圆曲线密码
分数(化学)
纯数学
部分分式分解
简单(哲学)
泊松分布
非线性系统
生成函数
数学分析
域代数上的
几何学
物理
哲学
加密
生物
有理函数
操作系统
量子力学
椭圆曲线密码
有机化学
化学
植物
遗传学
公钥密码术
认识论
计算机科学
统计
出处
期刊:Cornell University - arXiv
日期:2019-07-11
被引量:1
摘要
Following van der Poorten, we consider a family of nonlinear maps which are generated from the continued fraction expansion of a function on a hyperelliptic curve of genus $\mathrm{g}$. Using the connection with the classical theory of J-fractions and orthogonal polynomials, we show that in the simplest case $\mathrm{g}=1$ this provides a straightforward derivation of Hankel determinant formulae for the terms of a general Somos-4 sequence, which were found in a particular form by Chang, Hu and Xin, We extend these formulae to the higher genus case, and prove that generic Hankel determinants in genus two satisfy a Somos-8 relation. Moreover, for all $\mathrm{g}$ we show that the iteration for the continued fraction expansion is equivalent to a discrete Lax pair with a natural Poisson structure, and the associated nonlinear map is a discrete integrable system. This paper is dedicated to the memory of Jon Nimmo.
科研通智能强力驱动
Strongly Powered by AbleSci AI