Attentional bias in MDD: ERP components analysis and classification using a dot-probe task

任务(项目管理) 计算机科学 心理学 人工智能 自然语言处理 认知心理学 工程类 系统工程
作者
Xiaowei Li,Jianxiu Li,Bin Hu,Jing Zhu,Xuemin Zhang,Liuqing Wei,Ning Zhong,Mi Li,Zhijie Ding,Jing Yang,Lan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:164: 169-179 被引量:34
标识
DOI:10.1016/j.cmpb.2018.07.003
摘要

Strands of evidence have supported existence of negative attentional bias in patients with depression. This study aimed to assess the behavioral and electrophysiological signatures of attentional bias in major depressive disorder (MDD) and explore whether ERP components contain valuable information for discriminating between MDD patients and healthy controls (HCs). Electroencephalography data were collected from 17 patients with MDD and 17 HCs in a dot-probe task, with emotional-neutral pairs as experimental materials. Fourteen features related to ERP waveform shape were generated. Then, Correlated Feature Selection (CFS), ReliefF and GainRatio (GR) were applied for feature selection. For discriminating between MDDs and HCs, k-nearest neighbor (KNN), C4.5, Sequential Minimal Optimization (SMO) and Logistic Regression (LR) were used. Behaviorally, MDD patients showed significantly shorter reaction time (RT) to valid than invalid sad trials, with significantly higher bias score for sad-neutral pairs. Analysis of split-half reliability in RT indices indicated a strong reliability in RT, while coefficients of RT bias scores neared zero. These behavioral effects were supported by ERP results. MDD patients had higher P300 amplitude with the probe replacing a sad face than a neutral face, indicating difficult attention disengagement from negative emotional faces. Meanwhile, data mining analysis based on ERP components suggested that CFS was the best feature selection algorithm. Especially for the P300 induced by valid sad trials, the classification accuracy of CFS combination with any classifier was above 85%, and the KNN (k = 3) classifier achieved the highest accuracy (94%). MDD patients show difficulty in attention disengagement from negative stimuli, reflected by P300. The CFS over other methods leads to a good overall performance in most cases, especially when KNN classifier is used for P300 component classification, illustrating that ERP component may be applied as a tool for auxiliary diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhing完成签到,获得积分10
1秒前
XHH完成签到 ,获得积分0
1秒前
小蘑菇应助sv采纳,获得10
2秒前
欢呼橘子完成签到 ,获得积分10
2秒前
季夏完成签到,获得积分10
2秒前
喜悦成威发布了新的文献求助20
2秒前
大菠萝发布了新的文献求助10
3秒前
3秒前
德德发布了新的文献求助10
3秒前
天天快乐应助Silence采纳,获得10
4秒前
深爱不疑发布了新的文献求助200
4秒前
可爱的函函应助九川采纳,获得10
4秒前
科研通AI5应助端庄的黑米采纳,获得30
5秒前
md03393完成签到,获得积分10
5秒前
苏照杭应助snowdrift采纳,获得10
5秒前
esbd完成签到,获得积分10
6秒前
愉快之槐完成签到,获得积分10
6秒前
顺利涵菡发布了新的文献求助10
6秒前
Jenny应助拼搏思卉采纳,获得10
7秒前
7秒前
静时发布了新的文献求助10
7秒前
7秒前
JJlv完成签到,获得积分10
8秒前
8秒前
RMY完成签到 ,获得积分10
8秒前
9秒前
艺成成完成签到 ,获得积分10
9秒前
斯文败类应助大菠萝采纳,获得10
10秒前
一汁蟹完成签到,获得积分10
10秒前
jucy完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助zyh采纳,获得10
11秒前
榆木小鸟完成签到 ,获得积分10
11秒前
科研通AI5应助徐徐采纳,获得10
11秒前
12秒前
12秒前
zee完成签到 ,获得积分20
12秒前
单薄明雪完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762