Attentional bias in MDD: ERP components analysis and classification using a dot-probe task

脱离理论 重性抑郁障碍 计算机科学 特征选择 心理学 听力学 脑电图 人工智能 模式识别(心理学) 认知心理学 临床心理学 精神科 医学 心情 老年学
作者
Xiaowei Li,Jianxiu Li,Bin Hu,Jing Zhu,Xuemin Zhang,Liuqing Wei,Ning Zhong,Mi Li,Zhijie Ding,Jing Yang,Lan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:164: 169-179 被引量:25
标识
DOI:10.1016/j.cmpb.2018.07.003
摘要

Strands of evidence have supported existence of negative attentional bias in patients with depression. This study aimed to assess the behavioral and electrophysiological signatures of attentional bias in major depressive disorder (MDD) and explore whether ERP components contain valuable information for discriminating between MDD patients and healthy controls (HCs). Electroencephalography data were collected from 17 patients with MDD and 17 HCs in a dot-probe task, with emotional-neutral pairs as experimental materials. Fourteen features related to ERP waveform shape were generated. Then, Correlated Feature Selection (CFS), ReliefF and GainRatio (GR) were applied for feature selection. For discriminating between MDDs and HCs, k-nearest neighbor (KNN), C4.5, Sequential Minimal Optimization (SMO) and Logistic Regression (LR) were used. Behaviorally, MDD patients showed significantly shorter reaction time (RT) to valid than invalid sad trials, with significantly higher bias score for sad-neutral pairs. Analysis of split-half reliability in RT indices indicated a strong reliability in RT, while coefficients of RT bias scores neared zero. These behavioral effects were supported by ERP results. MDD patients had higher P300 amplitude with the probe replacing a sad face than a neutral face, indicating difficult attention disengagement from negative emotional faces. Meanwhile, data mining analysis based on ERP components suggested that CFS was the best feature selection algorithm. Especially for the P300 induced by valid sad trials, the classification accuracy of CFS combination with any classifier was above 85%, and the KNN (k = 3) classifier achieved the highest accuracy (94%). MDD patients show difficulty in attention disengagement from negative stimuli, reflected by P300. The CFS over other methods leads to a good overall performance in most cases, especially when KNN classifier is used for P300 component classification, illustrating that ERP component may be applied as a tool for auxiliary diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小赞同学完成签到,获得积分10
1秒前
李爱国应助丰富猕猴桃采纳,获得10
1秒前
小二郎应助YingYing采纳,获得10
1秒前
伈X发布了新的文献求助10
2秒前
Alberta完成签到,获得积分10
2秒前
2秒前
脑洞疼应助najibveto采纳,获得10
2秒前
2秒前
Shaylee完成签到,获得积分10
3秒前
3秒前
zino完成签到,获得积分10
3秒前
4秒前
xiaoli完成签到,获得积分10
4秒前
不配.应助sx采纳,获得10
4秒前
4秒前
abc完成签到 ,获得积分10
4秒前
情怀应助乐乐采纳,获得10
5秒前
顺利翠柏完成签到,获得积分10
6秒前
6秒前
深情安青应助个性迎彤采纳,获得10
7秒前
苗条的平安完成签到,获得积分10
8秒前
8秒前
舒桐发布了新的文献求助10
8秒前
慕青应助Yimi采纳,获得10
9秒前
9秒前
9秒前
自然完成签到,获得积分10
10秒前
爱笑的秋寒完成签到,获得积分10
10秒前
丽丽呀发布了新的文献求助10
11秒前
着急的女侠完成签到,获得积分10
11秒前
李博士发布了新的文献求助10
11秒前
俏皮含烟完成签到,获得积分10
12秒前
12秒前
窝头完成签到,获得积分10
13秒前
14秒前
14秒前
韩雪完成签到,获得积分20
14秒前
有足量NaCl关注了科研通微信公众号
14秒前
HYM1988发布了新的文献求助10
15秒前
yufanhui应助俏皮含烟采纳,获得10
16秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156964
求助须知:如何正确求助?哪些是违规求助? 2808328
关于积分的说明 7877268
捐赠科研通 2466845
什么是DOI,文献DOI怎么找? 1313040
科研通“疑难数据库(出版商)”最低求助积分说明 630355
版权声明 601919