Attentional bias in MDD: ERP components analysis and classification using a dot-probe task

任务(项目管理) 计算机科学 心理学 人工智能 自然语言处理 认知心理学 工程类 系统工程
作者
Xiaowei Li,Jianxiu Li,Bin Hu,Jing Zhu,Xuemin Zhang,Liuqing Wei,Ning Zhong,Mi Li,Zhijie Ding,Jing Yang,Lan Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:164: 169-179 被引量:45
标识
DOI:10.1016/j.cmpb.2018.07.003
摘要

Strands of evidence have supported existence of negative attentional bias in patients with depression. This study aimed to assess the behavioral and electrophysiological signatures of attentional bias in major depressive disorder (MDD) and explore whether ERP components contain valuable information for discriminating between MDD patients and healthy controls (HCs). Electroencephalography data were collected from 17 patients with MDD and 17 HCs in a dot-probe task, with emotional-neutral pairs as experimental materials. Fourteen features related to ERP waveform shape were generated. Then, Correlated Feature Selection (CFS), ReliefF and GainRatio (GR) were applied for feature selection. For discriminating between MDDs and HCs, k-nearest neighbor (KNN), C4.5, Sequential Minimal Optimization (SMO) and Logistic Regression (LR) were used. Behaviorally, MDD patients showed significantly shorter reaction time (RT) to valid than invalid sad trials, with significantly higher bias score for sad-neutral pairs. Analysis of split-half reliability in RT indices indicated a strong reliability in RT, while coefficients of RT bias scores neared zero. These behavioral effects were supported by ERP results. MDD patients had higher P300 amplitude with the probe replacing a sad face than a neutral face, indicating difficult attention disengagement from negative emotional faces. Meanwhile, data mining analysis based on ERP components suggested that CFS was the best feature selection algorithm. Especially for the P300 induced by valid sad trials, the classification accuracy of CFS combination with any classifier was above 85%, and the KNN (k = 3) classifier achieved the highest accuracy (94%). MDD patients show difficulty in attention disengagement from negative stimuli, reflected by P300. The CFS over other methods leads to a good overall performance in most cases, especially when KNN classifier is used for P300 component classification, illustrating that ERP component may be applied as a tool for auxiliary diagnosis of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助尧肙采纳,获得10
刚刚
大力沛萍发布了新的文献求助10
刚刚
大模型应助怡然百川采纳,获得10
刚刚
WenTang完成签到,获得积分10
刚刚
狂野善愁发布了新的文献求助10
1秒前
fjaa发布了新的文献求助10
1秒前
俊逸芸遥完成签到,获得积分10
1秒前
不吃芒果发布了新的文献求助10
1秒前
老福贵儿应助小雨转晴采纳,获得10
1秒前
1秒前
小蘑菇应助sxx采纳,获得10
1秒前
1秒前
喵喵发布了新的文献求助10
1秒前
1秒前
1秒前
小蘑菇应助lululala采纳,获得10
1秒前
聪慧丹寒完成签到,获得积分10
2秒前
2秒前
宝贝发布了新的文献求助10
2秒前
科研通AI6应助相忘于江湖采纳,获得20
2秒前
3秒前
tgene发布了新的文献求助10
3秒前
文心理完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助xh采纳,获得10
3秒前
我不李姐完成签到,获得积分10
3秒前
尊敬的雪兰完成签到,获得积分20
4秒前
4秒前
KeYang完成签到,获得积分10
4秒前
4秒前
文静的绯完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
fjaa完成签到,获得积分10
5秒前
万能图书馆应助aa采纳,获得10
6秒前
SY关注了科研通微信公众号
7秒前
大力沛萍完成签到,获得积分10
7秒前
lululala完成签到,获得积分10
7秒前
莫小杰完成签到,获得积分10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271