Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CipherSage应助元气糖采纳,获得10
刚刚
erhya发布了新的文献求助10
1秒前
小绵羊完成签到 ,获得积分10
1秒前
15发布了新的文献求助10
1秒前
彭于彦祖应助854fycchjh采纳,获得30
2秒前
fufu发布了新的文献求助10
2秒前
2秒前
在水一方应助山南有木兮采纳,获得10
3秒前
赘婿应助袁十三采纳,获得30
4秒前
妮可关注了科研通微信公众号
4秒前
周浅发布了新的文献求助10
4秒前
六金发布了新的文献求助10
4秒前
六点完成签到,获得积分10
5秒前
5秒前
百尺竿头发布了新的文献求助10
5秒前
6秒前
songs发布了新的文献求助20
6秒前
深情安青应助rp采纳,获得30
7秒前
7秒前
充电宝应助Xu采纳,获得10
8秒前
8秒前
8秒前
Owen应助iMoney采纳,获得10
9秒前
丘比特应助春天采纳,获得10
9秒前
9秒前
xxxxx发布了新的文献求助10
10秒前
12秒前
12秒前
彭于晏应助离岸采纳,获得10
12秒前
zjj发布了新的文献求助10
13秒前
rp完成签到,获得积分10
13秒前
希望天下0贩的0应助Lone采纳,获得10
13秒前
13秒前
LX发布了新的文献求助10
13秒前
erhya完成签到,获得积分10
14秒前
Lucas应助Gong采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961675
求助须知:如何正确求助?哪些是违规求助? 3507998
关于积分的说明 11139238
捐赠科研通 3240579
什么是DOI,文献DOI怎么找? 1791017
邀请新用户注册赠送积分活动 872696
科研通“疑难数据库(出版商)”最低求助积分说明 803326