Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
if完成签到,获得积分10
刚刚
紫菜完成签到,获得积分10
1秒前
1秒前
林林完成签到,获得积分10
1秒前
1秒前
1秒前
1661321476完成签到,获得积分10
2秒前
勤恳雅莉举报HY求助涉嫌违规
2秒前
2秒前
2秒前
承影完成签到,获得积分10
2秒前
亚亚呀完成签到,获得积分10
2秒前
菜菜鱼完成签到,获得积分10
2秒前
子叶叶子完成签到,获得积分0
3秒前
笑点低歌曲完成签到,获得积分10
3秒前
一万朵蝴蝶完成签到,获得积分10
3秒前
义气尔芙完成签到,获得积分10
4秒前
信仰完成签到,获得积分10
4秒前
4秒前
兰先生发布了新的文献求助10
4秒前
wjswift完成签到,获得积分10
4秒前
吃棒棒糖的杀手完成签到,获得积分10
4秒前
赘婿应助ZBH采纳,获得10
5秒前
末123456完成签到,获得积分10
6秒前
Zbmd完成签到,获得积分10
6秒前
6秒前
洛七落完成签到 ,获得积分10
7秒前
隐形的若灵完成签到,获得积分10
8秒前
Zzzz完成签到,获得积分10
8秒前
mgr完成签到,获得积分10
8秒前
zer0发布了新的文献求助10
8秒前
科研人完成签到,获得积分10
8秒前
啦啦啦啦啦完成签到 ,获得积分10
8秒前
打铁佬完成签到,获得积分10
8秒前
123y完成签到,获得积分10
9秒前
幽默的醉冬完成签到,获得积分10
9秒前
思蜀完成签到,获得积分10
9秒前
gqwe完成签到,获得积分20
10秒前
10秒前
俊逸依丝完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584999
求助须知:如何正确求助?哪些是违规求助? 4668850
关于积分的说明 14772776
捐赠科研通 4616602
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641