已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮柚子完成签到 ,获得积分10
刚刚
1秒前
Jenny发布了新的文献求助10
1秒前
zy完成签到,获得积分10
1秒前
2秒前
Verity应助爱睡觉的森森采纳,获得10
2秒前
小孙完成签到,获得积分10
3秒前
zcm1999完成签到,获得积分10
4秒前
星辰大海应助库鲁西采纳,获得10
4秒前
老实的南风完成签到 ,获得积分10
4秒前
小蘑菇应助33采纳,获得10
5秒前
sl完成签到 ,获得积分10
5秒前
临亦完成签到 ,获得积分10
5秒前
充电宝应助XIEQ采纳,获得10
6秒前
tt发布了新的文献求助10
6秒前
小状元完成签到 ,获得积分10
6秒前
7秒前
冷静新烟完成签到,获得积分10
8秒前
L_MD完成签到,获得积分10
8秒前
9秒前
宁宁完成签到,获得积分10
10秒前
10秒前
10秒前
XIEQ完成签到,获得积分10
12秒前
12秒前
67完成签到 ,获得积分10
13秒前
自由的雁完成签到 ,获得积分10
13秒前
aulinwl完成签到 ,获得积分20
13秒前
THEO发布了新的文献求助10
14秒前
14秒前
852应助爱睡觉的森森采纳,获得10
15秒前
15秒前
XIEQ发布了新的文献求助10
16秒前
kaka完成签到,获得积分0
17秒前
不太想学习完成签到 ,获得积分10
18秒前
烟花应助kk采纳,获得10
18秒前
WEILAI完成签到 ,获得积分10
19秒前
yuzhouzhou完成签到 ,获得积分10
19秒前
THEO完成签到,获得积分10
19秒前
梓念发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681