Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋蛋1完成签到,获得积分10
刚刚
刚刚
1秒前
ss发布了新的文献求助10
1秒前
SHJ完成签到,获得积分20
1秒前
海棠听风发布了新的文献求助10
2秒前
23发布了新的文献求助10
2秒前
xde145完成签到,获得积分10
2秒前
3秒前
shime完成签到,获得积分10
3秒前
费城青年发布了新的文献求助10
3秒前
3秒前
4秒前
SHDeathlock给SHDeathlock的求助进行了留言
5秒前
5秒前
5秒前
马静雨发布了新的文献求助50
6秒前
拼搏起眸发布了新的文献求助10
7秒前
二二二发布了新的文献求助10
7秒前
科目三应助柴火烧叽采纳,获得10
7秒前
啊实打实的卡完成签到,获得积分10
7秒前
orixero应助大智若愚啊采纳,获得10
7秒前
Z.完成签到 ,获得积分10
7秒前
DD发布了新的文献求助10
8秒前
daliu完成签到,获得积分10
8秒前
在水一方应助帅气鹭洋采纳,获得10
8秒前
王玉琴完成签到,获得积分10
9秒前
悦耳寒松完成签到,获得积分10
9秒前
费城青年完成签到,获得积分10
9秒前
晴子发布了新的文献求助20
9秒前
meta完成签到,获得积分10
9秒前
伶俐幻丝发布了新的文献求助10
9秒前
小胡先森完成签到,获得积分10
10秒前
谢安发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
wlj完成签到 ,获得积分10
12秒前
SciGPT应助hohokuz采纳,获得10
12秒前
书立方完成签到 ,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794