亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
movoandy发布了新的文献求助10
2秒前
章鱼完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
15秒前
无奈惜萱完成签到,获得积分20
16秒前
香蕉觅云应助metro采纳,获得10
18秒前
24秒前
24秒前
31秒前
ARESCI发布了新的文献求助10
36秒前
ARESCI完成签到,获得积分20
40秒前
52秒前
李爱国应助ARESCI采纳,获得10
54秒前
1分钟前
1分钟前
1分钟前
metro发布了新的文献求助10
2分钟前
圆滚滚的大肥猫完成签到,获得积分10
2分钟前
2分钟前
Ccccn完成签到,获得积分10
2分钟前
2分钟前
完美世界应助Hillson采纳,获得10
2分钟前
搜集达人应助PenguinC采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
PenguinC发布了新的文献求助10
3分钟前
3分钟前
3分钟前
秋刀鱼发布了新的文献求助10
3分钟前
酷炫小懒虫完成签到,获得积分0
3分钟前
加菲丰丰完成签到,获得积分0
4分钟前
充电宝应助Hoshino采纳,获得10
4分钟前
Yini应助FIN采纳,获得50
4分钟前
4分钟前
共享精神应助kevin采纳,获得30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
Hello应助长小右采纳,获得10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639496
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512745
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439