Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山茶发布了新的文献求助10
3秒前
科研通AI2S应助Xixicccccccc采纳,获得10
3秒前
3秒前
王子发布了新的文献求助10
3秒前
halo发布了新的文献求助10
3秒前
4秒前
英俊的铭应助追光少年采纳,获得10
5秒前
6秒前
CipherSage应助朴实寻双采纳,获得10
6秒前
隐形曼青应助振武校尉采纳,获得10
8秒前
8秒前
桥莺发布了新的文献求助10
9秒前
石头发布了新的文献求助10
9秒前
mosisa完成签到,获得积分10
10秒前
halo完成签到,获得积分10
10秒前
七月流火完成签到,获得积分10
10秒前
11秒前
小黄发布了新的文献求助10
11秒前
江城完成签到,获得积分10
11秒前
CC努力搞科研完成签到,获得积分10
11秒前
briefyark应助重要的凝竹采纳,获得10
11秒前
12秒前
科目三应助amazeman111采纳,获得10
12秒前
13秒前
tian完成签到,获得积分10
13秒前
westernline完成签到,获得积分10
14秒前
HOU应助恩琪采纳,获得10
15秒前
李大鸟发布了新的文献求助30
15秒前
斯文败类应助小李笑嘻嘻采纳,获得10
15秒前
科研小菜完成签到 ,获得积分0
16秒前
CodeCraft应助fionadong采纳,获得10
18秒前
19秒前
19秒前
QING完成签到,获得积分20
20秒前
20秒前
苗条书桃完成签到,获得积分10
21秒前
22秒前
22秒前
骆驼顶顶发布了新的文献求助10
23秒前
wml完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736423
求助须知:如何正确求助?哪些是违规求助? 5365865
关于积分的说明 15333121
捐赠科研通 4880261
什么是DOI,文献DOI怎么找? 2622762
邀请新用户注册赠送积分活动 1571646
关于科研通互助平台的介绍 1528507