亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙孙应助Jim采纳,获得30
29秒前
充电宝应助EliotFang采纳,获得10
55秒前
1分钟前
陈杰发布了新的文献求助10
1分钟前
kuoping完成签到,获得积分0
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
nickel完成签到,获得积分10
2分钟前
2分钟前
EliotFang发布了新的文献求助10
2分钟前
沉沉完成签到 ,获得积分0
2分钟前
3分钟前
3分钟前
Frank发布了新的文献求助10
3分钟前
oleskarabach发布了新的文献求助10
3分钟前
EliotFang完成签到,获得积分10
3分钟前
fsznc完成签到 ,获得积分0
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
oleskarabach发布了新的文献求助10
4分钟前
CipherSage应助科研通管家采纳,获得10
5分钟前
开心完成签到 ,获得积分10
5分钟前
6分钟前
顾矜应助zsc采纳,获得10
6分钟前
榆果子发布了新的文献求助10
6分钟前
榆果子完成签到,获得积分10
6分钟前
我是笨蛋完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
荆棘鸟发布了新的文献求助10
7分钟前
正传阿飞完成签到,获得积分10
7分钟前
隐形曼青应助荆棘鸟采纳,获得10
7分钟前
荆棘鸟完成签到,获得积分10
7分钟前
7分钟前
Frank完成签到,获得积分10
7分钟前
鲤鱼听荷完成签到 ,获得积分10
8分钟前
9分钟前
tabblk发布了新的文献求助10
9分钟前
赘婿应助科研通管家采纳,获得10
9分钟前
QCB完成签到 ,获得积分10
9分钟前
陈杰发布了新的文献求助10
9分钟前
宋艳芳完成签到,获得积分10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582372
求助须知:如何正确求助?哪些是违规求助? 4000106
关于积分的说明 12382171
捐赠科研通 3675045
什么是DOI,文献DOI怎么找? 2025670
邀请新用户注册赠送积分活动 1059319
科研通“疑难数据库(出版商)”最低求助积分说明 945976