Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天喝咖啡完成签到 ,获得积分10
刚刚
荀沛珊发布了新的文献求助10
1秒前
cocoyck123发布了新的文献求助10
1秒前
守得云开见月明完成签到,获得积分20
2秒前
2秒前
暴龙深夜落泪关注了科研通微信公众号
2秒前
杰克完成签到,获得积分10
3秒前
3秒前
3秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
细心的傥发布了新的文献求助10
4秒前
4秒前
彩色傲菡完成签到,获得积分10
4秒前
4秒前
喜欢吃肉的羊羊完成签到 ,获得积分10
4秒前
整齐的泥猴桃完成签到,获得积分10
4秒前
调皮秋尽完成签到,获得积分10
5秒前
5秒前
俭朴的向薇完成签到,获得积分10
5秒前
大模型应助航_123采纳,获得10
5秒前
Y.B.Cao发布了新的文献求助10
5秒前
超帅从彤发布了新的文献求助10
6秒前
CodeCraft应助许愿非树采纳,获得10
6秒前
kaka发布了新的文献求助30
6秒前
wyao完成签到,获得积分10
6秒前
husiqi_547完成签到,获得积分10
6秒前
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
机智的书雪完成签到,获得积分10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
8秒前
fyq84应助科研通管家采纳,获得30
8秒前
wanci应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388179
求助须知:如何正确求助?哪些是违规求助? 4510159
关于积分的说明 14034562
捐赠科研通 4421062
什么是DOI,文献DOI怎么找? 2428561
邀请新用户注册赠送积分活动 1421212
关于科研通互助平台的介绍 1400459