亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bird发布了新的文献求助10
2秒前
5秒前
RW发布了新的文献求助10
11秒前
11秒前
bird完成签到,获得积分10
20秒前
小马甲应助琪琪采纳,获得10
37秒前
39秒前
RW完成签到,获得积分10
47秒前
47秒前
琪琪发布了新的文献求助10
55秒前
qq158014169完成签到 ,获得积分10
1分钟前
BowieHuang应助琪琪采纳,获得10
1分钟前
1分钟前
务实鞅完成签到 ,获得积分10
1分钟前
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
阿司匹林发布了新的文献求助10
1分钟前
yanifang发布了新的文献求助30
1分钟前
苏诗兰发布了新的文献求助10
1分钟前
1分钟前
Rae发布了新的文献求助10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
陳.发布了新的文献求助10
2分钟前
斯文败类应助rrr采纳,获得10
2分钟前
2分钟前
跳跃猫咪完成签到 ,获得积分10
2分钟前
KAZEN完成签到 ,获得积分10
2分钟前
2分钟前
yg发布了新的文献求助30
2分钟前
2分钟前
2分钟前
小钰完成签到,获得积分10
2分钟前
2分钟前
yg完成签到,获得积分20
3分钟前
久久丫完成签到 ,获得积分10
3分钟前
yu完成签到 ,获得积分10
3分钟前
3分钟前
陌陌发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723513
求助须知:如何正确求助?哪些是违规求助? 5278467
关于积分的说明 15298818
捐赠科研通 4871973
什么是DOI,文献DOI怎么找? 2616395
邀请新用户注册赠送积分活动 1566216
关于科研通互助平台的介绍 1523110