Exploring convolutional, recurrent, and hybrid deep neural networks for speech and music detection in a large audio dataset

计算机科学 卷积神经网络 语音识别 光谱图 循环神经网络 人工智能 深度学习 人工神经网络 语音活动检测 机器学习 语音处理
作者
Diego de Benito-Gorron,Alicia Lozano-Díez,Doroteo T. Toledano,Joaquín González-Rodríguez
出处
期刊:Eurasip Journal on Audio, Speech, and Music Processing [Springer Nature]
卷期号:2019 (1) 被引量:40
标识
DOI:10.1186/s13636-019-0152-1
摘要

Audio signals represent a wide diversity of acoustic events, from background environmental noise to spoken communication. Machine learning models such as neural networks have already been proposed for audio signal modeling, where recurrent structures can take advantage of temporal dependencies. This work aims to study the implementation of several neural network-based systems for speech and music event detection over a collection of 77,937 10-second audio segments (216 h), selected from the Google AudioSet dataset. These segments belong to YouTube videos and have been represented as mel-spectrograms. We propose and compare two approaches. The first one is the training of two different neural networks, one for speech detection and another for music detection. The second approach consists on training a single neural network to tackle both tasks at the same time. The studied architectures include fully connected, convolutional and LSTM (long short-term memory) recurrent networks. Comparative results are provided in terms of classification performance and model complexity. We would like to highlight the performance of convolutional architectures, specially in combination with an LSTM stage. The hybrid convolutional-LSTM models achieve the best overall results (85% accuracy) in the three proposed tasks. Furthermore, a distractor analysis of the results has been carried out in order to identify which events in the ontology are the most harmful for the performance of the models, showing some difficult scenarios for the detection of music and speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
寒食给张懒懒的求助进行了留言
2秒前
2秒前
一秋一年完成签到,获得积分10
4秒前
隐形曼青应助yang采纳,获得10
4秒前
kk完成签到,获得积分10
4秒前
5秒前
Melody发布了新的文献求助10
6秒前
6秒前
p浣完成签到,获得积分10
6秒前
青天鸟1989发布了新的文献求助10
7秒前
阿T发布了新的文献求助10
10秒前
12秒前
minmin完成签到,获得积分10
12秒前
p浣发布了新的文献求助10
12秒前
温婉的惜文完成签到 ,获得积分10
14秒前
17秒前
暗袍发布了新的文献求助10
17秒前
科研通AI2S应助马上毕业采纳,获得10
20秒前
披萨红应助茶博士采纳,获得10
20秒前
22秒前
24秒前
在水一方应助柠檬味的水采纳,获得10
24秒前
27秒前
小席发布了新的文献求助10
27秒前
youchao发布了新的文献求助10
27秒前
99giddens给99giddens的求助进行了留言
29秒前
温暖涫发布了新的文献求助30
33秒前
CodeCraft应助吃了当归采纳,获得10
33秒前
33秒前
Melody完成签到,获得积分10
34秒前
36秒前
Li完成签到,获得积分10
38秒前
Miao完成签到,获得积分10
38秒前
39秒前
刻苦丝袜发布了新的文献求助10
40秒前
小席完成签到,获得积分10
41秒前
媛媛发布了新的文献求助10
42秒前
44秒前
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268244
求助须知:如何正确求助?哪些是违规求助? 2907783
关于积分的说明 8343269
捐赠科研通 2578150
什么是DOI,文献DOI怎么找? 1401716
科研通“疑难数据库(出版商)”最低求助积分说明 655160
邀请新用户注册赠送积分活动 634266