鉴定(生物学)
有机体
计算机科学
计算生物学
基因
系统生物学
生物
遗传学
植物
作者
Ming Fang,Xiujuan Lei,Ling Guo
出处
期刊:Current Bioinformatics
[Bentham Science]
日期:2019-03-07
卷期号:14 (3): 211-225
被引量:6
标识
DOI:10.2174/1574893613666181112150422
摘要
Background: Essential proteins play important roles in the survival or reproduction of an organism and support the stability of the system. Essential proteins are the minimum set of proteins absolutely required to maintain a living cell. The identification of essential proteins is a very important topic not only for a better comprehension of the minimal requirements for cellular life, but also for a more efficient discovery of the human disease genes and drug targets. Traditionally, as the experimental identification of essential proteins is complex, it usually requires great time and expense. With the cumulation of high-throughput experimental data, many computational methods that make useful complements to experimental methods have been proposed to identify essential proteins. In addition, the ability to rapidly and precisely identify essential proteins is of great significance for discovering disease genes and drug design, and has great potential for applications in basic and synthetic biology research. Objective: The aim of this paper is to provide a review on the identification of essential proteins and genes focusing on the current developments of different types of computational methods, point out some progress and limitations of existing methods, and the challenges and directions for further research are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI