A Survey on Computational Methods for Essential Proteins and Genes Prediction

鉴定(生物学) 有机体 计算机科学 计算生物学 基因 系统生物学 生物 遗传学 植物
作者
Ming Fang,Xiujuan Lei,Ling Guo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:14 (3): 211-225 被引量:6
标识
DOI:10.2174/1574893613666181112150422
摘要

Background: Essential proteins play important roles in the survival or reproduction of an organism and support the stability of the system. Essential proteins are the minimum set of proteins absolutely required to maintain a living cell. The identification of essential proteins is a very important topic not only for a better comprehension of the minimal requirements for cellular life, but also for a more efficient discovery of the human disease genes and drug targets. Traditionally, as the experimental identification of essential proteins is complex, it usually requires great time and expense. With the cumulation of high-throughput experimental data, many computational methods that make useful complements to experimental methods have been proposed to identify essential proteins. In addition, the ability to rapidly and precisely identify essential proteins is of great significance for discovering disease genes and drug design, and has great potential for applications in basic and synthetic biology research. Objective: The aim of this paper is to provide a review on the identification of essential proteins and genes focusing on the current developments of different types of computational methods, point out some progress and limitations of existing methods, and the challenges and directions for further research are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小小发布了新的文献求助30
刚刚
1秒前
周数羊发布了新的文献求助10
2秒前
自然火车发布了新的文献求助10
2秒前
abtitw发布了新的文献求助10
3秒前
慕青应助朴素的海莲采纳,获得10
3秒前
香蕉觅云应助欢喜采纳,获得10
4秒前
4秒前
4秒前
dadazhou完成签到,获得积分10
6秒前
7秒前
Agnesma完成签到,获得积分10
7秒前
科研通AI2S应助魔幻的访天采纳,获得10
7秒前
科研通AI2S应助mbf采纳,获得10
7秒前
ranj发布了新的文献求助10
8秒前
MNL给MNL的求助进行了留言
8秒前
年年年年完成签到,获得积分10
9秒前
9秒前
12秒前
14秒前
平常的苡完成签到,获得积分10
16秒前
墨之未发布了新的文献求助10
16秒前
朴素的海莲完成签到,获得积分20
16秒前
雪白映天完成签到,获得积分10
17秒前
nini发布了新的文献求助30
17秒前
乐乐应助开朗含海采纳,获得10
18秒前
汉堡包应助周末不上发条采纳,获得10
19秒前
gincv发布了新的文献求助10
19秒前
22秒前
十一发布了新的文献求助10
25秒前
xx完成签到 ,获得积分20
26秒前
27秒前
仚屳完成签到,获得积分10
29秒前
mmmio应助科研通管家采纳,获得10
29秒前
mmmio应助科研通管家采纳,获得10
29秒前
yin应助科研通管家采纳,获得10
29秒前
mmmio应助科研通管家采纳,获得10
29秒前
mmmio应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
30秒前
共享精神应助科研通管家采纳,获得10
30秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594