Hydrophobic WO3/SiO2 catalyst for the nitration of aromatics in liquid phase

化学工程 材料科学 相(物质) 有机化学
作者
Atul Balasaheb Kulal,M.M. Kasabe,Pravin Jadhav,Mohan K. Dongare,Shubhangi B. Umbarkar
出处
期刊:Applied Catalysis A-general [Elsevier]
卷期号:574: 105-113 被引量:15
标识
DOI:10.1016/j.apcata.2019.02.002
摘要

Abstract WO3/SiO2 solid acid catalyst synthesized using sol gel method has shown promising activity (up to 65% conversion) for aromatic nitration in liquid phase using commercial nitric acid (70%) as nitrating agent without using any sulfuric acid. The water formed during the reaction as well as water from dilute nitric acid (70%) was removed azeotropically, however due to the hydrophilic nature of the catalyst, some water gets strongly adsorbed on catalyst surface forming a barrier layer between catalyst and organics. This prevents effective adsorption of substrate on catalyst surface for its subsequent reaction. To improve the activity further, the hydrophilic/hydrophobic nature of the catalyst was altered by post modification by grafting with commercial short chain organosilane (Dynasylan 9896). The modified 20% WO3/SiO2 catalyst when used for o-xylene nitration in liquid phase, showed significant increase in the conversion from 65% to 80% under identical reaction conditions. Catalyst characterization revealed decrease in the surface area of 20% WO3/SiO2 from 356 m2/g to 302 m2/g after grafting with Dynasylan 9896. The fine dispersion of WO3 particles (2–5 nm) on silica support was not affected due to modification. NMR and FTIR study revealed the decrease in surface hydroxyl groups imparting hydrophobicity to the catalyst. Interestingly the total acidic sites of the catalyst remained almost unaltered (0.54 mmol NH3/g) even after modification. Even though, the acidity and other characteristics of the catalyst did not change appreciably, there was a considerable increase in the o-xylene conversion which can be ascribed to the hydrophobic nature of the catalyst.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wguanmc发布了新的文献求助10
1秒前
1秒前
我刚上小学完成签到,获得积分10
1秒前
科研通AI2S应助harry采纳,获得10
1秒前
科研小美完成签到 ,获得积分10
4秒前
4秒前
9秒前
光亮夏天完成签到,获得积分10
12秒前
DMMM发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助Rita采纳,获得10
15秒前
cola完成签到,获得积分10
16秒前
16秒前
19秒前
Jade发布了新的文献求助10
19秒前
wguanmc完成签到,获得积分10
20秒前
浅色西完成签到,获得积分10
20秒前
含蓄初之发布了新的文献求助10
20秒前
21秒前
景景完成签到,获得积分10
22秒前
嗯哼应助DMMM采纳,获得20
24秒前
25秒前
铅笔羊完成签到 ,获得积分10
26秒前
懒羊羊完成签到,获得积分10
27秒前
28秒前
CodeCraft应助小羊采纳,获得10
30秒前
30秒前
30秒前
35秒前
乐天发布了新的文献求助10
35秒前
35秒前
罗罗发布了新的文献求助10
35秒前
38秒前
七七发布了新的文献求助10
38秒前
认真的傲柏完成签到,获得积分10
38秒前
39秒前
39秒前
karstbing发布了新的文献求助10
40秒前
Cker完成签到,获得积分10
40秒前
bju发布了新的文献求助30
42秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
中国氢能技术发展路线图研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170213
求助须知:如何正确求助?哪些是违规求助? 2821426
关于积分的说明 7934126
捐赠科研通 2481670
什么是DOI,文献DOI怎么找? 1322010
科研通“疑难数据库(出版商)”最低求助积分说明 633451
版权声明 602595