Fault Diagnosis of Induction Motors Using Recurrence Quantification Analysis and LSTM with Weighted BN

人工智能 计算机科学 递归量化分析 规范化(社会学) 感应电动机 深度学习 特征提取 特征(语言学) 特征工程 机器学习 断层(地质) 特征学习 模式识别(心理学) 工程类 非线性系统 电压 电气工程 物理 地质学 量子力学 哲学 社会学 地震学 语言学 人类学
作者
Dengyu Xiao,Yongfeng Huang,Chengjin Qin,Haotian Shi,Yanming Liu
出处
期刊:Shock and Vibration [Hindawi Publishing Corporation]
卷期号:2019: 1-14 被引量:25
标识
DOI:10.1155/2019/8325218
摘要

Motor fault diagnosis has gained much attention from academic research and industry to guarantee motor reliability. Generally, there exist two major approaches in the feature engineering for motor fault diagnosis: (1) traditional feature learning, which heavily depends on manual feature extraction, is often unable to discover the important underlying representations of faulty motors; (2) state-of-the-art deep learning techniques, which have somewhat improved diagnostic performance, while the intrinsic characteristics of black box and the lack of domain expertise have limited the further improvement. To cover those shortcomings, in this paper, two manual feature learning approaches are embedded into a deep learning algorithm, and thus, a novel fault diagnosis framework is proposed for three-phase induction motors with a hybrid feature learning method, which combines empirical statistical parameters, recurrence quantification analysis (RQA) and long short-term memory (LSTM) neural network. In addition, weighted batch normalization (BN), a modification of BN, is designed to evaluate the contributions of the three feature learning approaches. The proposed method was experimentally demonstrated by carrying out the tests of 8 induction motors with 8 different faulty types. Results show that compared with other popular intelligent diagnosis methods, the proposed method achieves the highest diagnostic accuracy in both the original dataset and the noised dataset. It also verifies that RQA can play a bigger role in real-world applications for its excellent performance in dealing with the noised signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助谭久久采纳,获得10
刚刚
yout完成签到,获得积分10
1秒前
爆米花应助zcj采纳,获得10
1秒前
anna1992发布了新的文献求助10
1秒前
阿峰发布了新的文献求助10
1秒前
冷静的宛发布了新的文献求助10
1秒前
科研废料发布了新的文献求助10
2秒前
2秒前
2秒前
Sky完成签到,获得积分20
3秒前
XYN1完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
5秒前
冰冰宝完成签到,获得积分10
5秒前
6秒前
英姑应助小果采纳,获得10
7秒前
所所应助幽幽又默默采纳,获得10
7秒前
7秒前
7秒前
8秒前
zhangzhangZZZ发布了新的文献求助10
8秒前
梦梦很忙关注了科研通微信公众号
8秒前
喵呜发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
和谐冷安发布了新的文献求助10
10秒前
10秒前
10秒前
mhy完成签到,获得积分10
10秒前
10秒前
11秒前
淡定的酬海完成签到,获得积分20
11秒前
小肆完成签到 ,获得积分10
12秒前
思源应助HOXXXiii采纳,获得10
12秒前
郑爱学习发布了新的文献求助10
12秒前
12秒前
大雪深埋发布了新的文献求助10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3744562
求助须知:如何正确求助?哪些是违规求助? 3287474
关于积分的说明 10053819
捐赠科研通 3003660
什么是DOI,文献DOI怎么找? 1649196
邀请新用户注册赠送积分活动 785096
科研通“疑难数据库(出版商)”最低求助积分说明 750946