Fault Diagnosis of Induction Motors Using Recurrence Quantification Analysis and LSTM with Weighted BN

人工智能 计算机科学 递归量化分析 规范化(社会学) 感应电动机 深度学习 特征提取 特征(语言学) 特征工程 机器学习 断层(地质) 特征学习 模式识别(心理学) 工程类 非线性系统 电压 电气工程 物理 地质学 量子力学 哲学 社会学 地震学 语言学 人类学
作者
Dengyu Xiao,Yongfeng Huang,Chengjin Qin,Haotian Shi,Yanming Liu
出处
期刊:Shock and Vibration [Hindawi Publishing Corporation]
卷期号:2019: 1-14 被引量:25
标识
DOI:10.1155/2019/8325218
摘要

Motor fault diagnosis has gained much attention from academic research and industry to guarantee motor reliability. Generally, there exist two major approaches in the feature engineering for motor fault diagnosis: (1) traditional feature learning, which heavily depends on manual feature extraction, is often unable to discover the important underlying representations of faulty motors; (2) state-of-the-art deep learning techniques, which have somewhat improved diagnostic performance, while the intrinsic characteristics of black box and the lack of domain expertise have limited the further improvement. To cover those shortcomings, in this paper, two manual feature learning approaches are embedded into a deep learning algorithm, and thus, a novel fault diagnosis framework is proposed for three-phase induction motors with a hybrid feature learning method, which combines empirical statistical parameters, recurrence quantification analysis (RQA) and long short-term memory (LSTM) neural network. In addition, weighted batch normalization (BN), a modification of BN, is designed to evaluate the contributions of the three feature learning approaches. The proposed method was experimentally demonstrated by carrying out the tests of 8 induction motors with 8 different faulty types. Results show that compared with other popular intelligent diagnosis methods, the proposed method achieves the highest diagnostic accuracy in both the original dataset and the noised dataset. It also verifies that RQA can play a bigger role in real-world applications for its excellent performance in dealing with the noised signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
halo完成签到,获得积分10
刚刚
Orange应助Panchael采纳,获得10
刚刚
旦旦旦旦旦旦完成签到,获得积分10
刚刚
搞怪从蕾完成签到,获得积分10
1秒前
不吃了完成签到 ,获得积分0
2秒前
英俊的铭应助傻傻乐采纳,获得10
2秒前
胖飞飞完成签到,获得积分10
3秒前
3秒前
鲤鱼野狼完成签到 ,获得积分10
4秒前
搜集达人应助炙热尔烟采纳,获得10
5秒前
FYF发布了新的文献求助20
6秒前
白晨浩发布了新的文献求助10
7秒前
我有一个超能力完成签到 ,获得积分10
7秒前
芒果好高完成签到,获得积分10
8秒前
9秒前
9秒前
yuyu完成签到 ,获得积分10
9秒前
理穆辛发布了新的文献求助50
10秒前
孟浮尘完成签到,获得积分10
11秒前
11秒前
迅速的凡霜完成签到 ,获得积分10
12秒前
英姑应助mnliao采纳,获得10
13秒前
666发布了新的文献求助10
13秒前
lllttt发布了新的文献求助10
15秒前
15秒前
15秒前
赫连紫发布了新的文献求助10
16秒前
17秒前
安静的棉花糖完成签到 ,获得积分10
17秒前
传奇3应助JIE采纳,获得10
18秒前
福祸相依完成签到,获得积分10
18秒前
18秒前
19秒前
肖肖发布了新的文献求助10
22秒前
22秒前
tjusasa发布了新的文献求助10
23秒前
23秒前
WHH发布了新的文献求助10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966045
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157819
捐赠科研通 3245924
什么是DOI,文献DOI怎么找? 1793233
邀请新用户注册赠送积分活动 874278
科研通“疑难数据库(出版商)”最低求助积分说明 804304