亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilising Deep Learning and Genome Wide Association Studies for Epistatic-Driven Preterm Birth Classification in African-American Women

全基因组关联研究 单核苷酸多态性 上位性 遗传关联 SNP公司 表达数量性状基因座 生物 遗传学 计算生物学 计算机科学 基因型 基因
作者
Paul Fergus,Casimiro Aday Curbelo Montañez,Basma Abdulaimma,Paulo J. G. Lisboa,Carl Chalmers,Beth L. Pineles
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:18
标识
DOI:10.1109/tcbb.2018.2868667
摘要

Genome-Wide Association Studies (GWAS) are used to identify statistically significant genetic variants in case-control studies. The main objective is to find single nucleotide polymorphisms (SNPs) that influence a particular phenotype (i.e., disease trait). GWAS typically use a p-value threshold of $5*10^{-8}$ to identify highly ranked SNPs. While this approach has proven useful for detecting disease-susceptible SNPs, evidence has shown that many of these are, in fact, false positives. Consequently, there is some ambiguity about the most suitable threshold for claiming genome-wide significance. Many believe that using lower p-values will allow us to investigate the joint epistatic interactions between SNPs and provide better insights into phenotype expression. One example that uses this approach is multifactor dimensionality reduction (MDR), which identifies combinations of SNPs that interact to influence a particular outcome. However, computational complexity is increased exponentially as a function of higher-order combinations making approaches like MDR difficult to implement. Even so, understanding epistatic interactions in complex diseases is a fundamental component for robust genotype-phenotype mapping. In this paper, we propose a novel framework that combines GWAS quality control and logistic regression with deep learning stacked autoencoders to abstract higher-order SNP interactions from large, complex genotyped data for case-control classification tasks in GWAS analysis. We focus on the challenging problem of classifying preterm births which has a strong genetic component with unexplained heritability reportedly between 20-40 percent. A GWAS data set, obtained from dbGap is utilised, which contains predominantly urban low-income African-American women who had normal and preterm deliveries. Epistatic interactions from original SNP sequences were extracted through a deep learning stacked autoencoder model and used to fine-tune a classifier for discriminating between term and preterm births observations. All models are evaluated using standard binary classifier performance metrics. The findings show that important information pertaining to SNPs and epistasis can be extracted from 4,666 raw SNPs generated using logistic regression (p-value = $5*10^{-3}$ ) and used to fit a highly accurate classifier model. The following results (Sen = 0.9562, Spec = 0.8780, Gini = 0.9490, Logloss = 0.5901, AUC = 0.9745, and MSE = 0.2010) were obtained using 50 hidden nodes and (Sen = 0.9289, Spec = 0.9591, Gini = 0.9651, Logloss = 0.3080, AUC = 0.9825, and MSE = 0.0942) using 500 hidden nodes. The results were compared with a Support Vector Machine (SVM), a Random Forest (RF), and a Fishers Linear Discriminant Analysis classifier, which all failed to improve on the deep learning approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斐波那契的兔子完成签到,获得积分10
3秒前
luna发布了新的文献求助10
4秒前
思源应助平常的白筠采纳,获得10
11秒前
啊啊啊完成签到 ,获得积分10
12秒前
无花果应助luna采纳,获得10
20秒前
xxxxxxh发布了新的文献求助20
21秒前
所所应助畅快的涵蕾采纳,获得10
33秒前
36秒前
xxxxxxh完成签到,获得积分10
37秒前
40秒前
luna发布了新的文献求助10
41秒前
大气的玉米完成签到,获得积分10
44秒前
dongdong完成签到,获得积分20
53秒前
bkagyin应助luna采纳,获得10
54秒前
1分钟前
luna发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
zxy应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
艾米发布了新的文献求助10
1分钟前
迅速易云发布了新的文献求助10
1分钟前
Jasper应助luna采纳,获得10
1分钟前
冷漠的杨老板完成签到,获得积分10
1分钟前
2分钟前
Jasper应助艾米采纳,获得10
2分钟前
2分钟前
共享精神应助冷艳的立果采纳,获得10
2分钟前
艾米完成签到,获得积分20
2分钟前
luna发布了新的文献求助10
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
李健的小迷弟应助liziqi采纳,获得10
2分钟前
hsvxvk完成签到 ,获得积分10
3分钟前
捉迷藏完成签到,获得积分10
3分钟前
模糊中正应助捉迷藏采纳,获得10
3分钟前
赘婿应助小合采纳,获得10
3分钟前
斯文墨镜完成签到,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466798
求助须知:如何正确求助?哪些是违规求助? 3059583
关于积分的说明 9067131
捐赠科研通 2750043
什么是DOI,文献DOI怎么找? 1508953
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896