Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images

高光谱成像 多光谱图像 像素 红边 归一化差异植被指数 植被(病理学) 遥感 数学 环境科学 人工智能 计算机科学 叶面积指数 农学 生物 地理 病理 医学
作者
Shishi Liu,Lantao Li,Wenhan Gao,Yukun Zhang,Yinuo Liu,Shanqin Wang,Jianwei Lü
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:151: 185-195 被引量:73
标识
DOI:10.1016/j.compag.2018.05.026
摘要

This study aimed to investigate whether the optimal vegetation indices (VIs) derived from the in situ hyperspectral data to estimate the nitrogen nutrition index (NNI) can also be used at the local scale using unmanned aerial vehicle (UAV) multispectral images, and whether texture metrics derived from UAV images could improve the remote estimation of the NNI in winter oilseed rape. Three field experiments with different N fertilization levels were conducted in two sites in Hubei Province, China. The mechanistic and empirical methods were both employed to estimate NNI. With the in situ hyperspectral data, the empirical method based on structural VIs (R2 is about 0.70) or the photochemical reflectance index (PRI) (R2 = 0.73) provided more accurate estimations of NNI than the mechanistic method did (R2 = 0.62). Although most of the studied VIs were strongly correlated with the NNI, they had different responses to the NNI at the low N fertilization and the optimal to excessive N fertilization rates. For the UAV multispectral images, the mean VI of all pixels within the region of interest (ROI) (referred to VI_mixed) outperformed the mean VI of vegetation pixels within the ROI (referred to VI_pure). The mean normalized difference vegetation index (NDVI_mixed), the modified soil adjusted vegetation index 2 (MSAVI2_mixed), and the red edge chlorophyll index (CIred edge_mixed) of all pixels within the ROI yielded more accurate NNI estimates than the other VIs. Furthermore, the stepwise multiple linear regression models with VIs and texture metrics of VIs provided more accurate NNI estimations than the models based solely on VIs. Results of this study suggested the great potential of UAV multispectral images in monitoring the crop N status at local scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu发布了新的文献求助10
刚刚
xinghuo完成签到 ,获得积分10
2秒前
CodeCraft应助拉长的博超采纳,获得10
2秒前
清爽的绫完成签到,获得积分10
2秒前
dd发布了新的文献求助10
2秒前
星辰大海应助小葡萄采纳,获得10
4秒前
5秒前
Owen应助萧水白采纳,获得100
5秒前
5秒前
东东发布了新的文献求助10
5秒前
6秒前
大模型应助diamond采纳,获得10
7秒前
cocolu应助苏蛋蛋i采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
9秒前
小葡萄完成签到 ,获得积分10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
贰拾贰应助科研通管家采纳,获得10
9秒前
cctv18应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
cctv18应助科研通管家采纳,获得30
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
10秒前
九叶发布了新的文献求助10
11秒前
11秒前
12秒前
Jasper应助寻123采纳,获得10
12秒前
所所应助RenS采纳,获得10
12秒前
乐乐应助hyw采纳,获得10
12秒前
13秒前
苏瑾行发布了新的文献求助10
14秒前
田様应助梦里的三片雪花采纳,获得10
14秒前
15秒前
15秒前
九叶完成签到,获得积分10
16秒前
17秒前
sakana发布了新的文献求助10
18秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613