青铜色
材料科学
板簧
田口方法
蚀刻(微加工)
铍
机械工程
弹簧(装置)
冶金
复合材料
工程类
物理
图层(电子)
核物理学
作者
Ruijun Li,Pengyu Wang,Li Y,Kuang‐Chao Fan,Fangfang Liu,Lijuan Chen,Qiangxian Huang
摘要
Patterned leaf springs made of a beryllium bronze sheet are the key components of certain micro/nano contact probes. The accuracy of the probe is determined based on the precision of the formed pattern. However, a traditional manufacturing method using wire-electrode discharge machining (wire-EDM) is subject to poor tolerance at the sharp edges and corners. In addition, high energy consumption and costs are incurred for complex patterns. This paper presents a new chemical etching method for the manufacturing of a patterned leaf spring with high precision. Both the principle and process are introduced. Taguchi experiments were designed and conducted and the optimal process parameters were obtained based on the mean value and a variance analysis. Four V-shaped and some other complex patterned leaf springs were successfully fabricated. Comparison experiments concerning the characteristic parameters of the leaf spring were also conducted. The experimental results reveal that the patterned leaf springs manufactured through this method are much better than those achieved using wire-EDM. This manufacturing method can be used to fabricate different high-precision patterned leaf springs or membranes for coordinate measuring machines (CMM) probes and other measuring equipment.
科研通智能强力驱动
Strongly Powered by AbleSci AI