催化作用
水煤气变换反应
格式化
化学
光化学
吸附
反应中间体
反应机理
氧化还原
氧气
同位素标记
无机化学
光谱学
物理化学
有机化学
物理
量子力学
作者
Luis F. Bobadilla,José Santos,Svetlana Ivanova,J.A. Odriozola,Atsushi Urakawa
标识
DOI:10.1021/acscatal.8b02121
摘要
The reaction mechanism of the reverse water–gas shift (RWGS) reaction was investigated using two commercial gold-based catalysts supported on Al2O3 and TiO2. The surface species formed during the reaction and reaction mechanisms were elucidated by transient and steady-state operando DRIFTS studies. It was revealed that RWGS reaction over Au/Al2O3 proceeds through the formation of formate intermediates that are reduced to CO. In the case of the Au/TiO2 catalyst, the reaction goes through a redox mechanism with the suggested formation of hydroxycarbonyl intermediates, which further decompose to CO and water. The Ti3+ species, the surface hydroxyls, and oxygen vacancies jointly participate. The absence of carbonyl species adsorbed on gold particles during the reaction for both catalysts indicates that the reaction pathway involving dissociative adsorption of CO2 on Au particles can be discarded. To complete the study, operando ultraviolet–visible spectroscopy was successfully applied to confirm the presence of Ti3+ and to understand the role of the oxygen vacancies of TiO2 support in activating CO2 and thus the subsequent RWGS reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI