已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Treatment of cooling tower blowdown water: The effect of biodispersant on the ultrafiltration membrane

冷却塔 锅炉排污 废水 结垢 废物管理 反渗透 超滤(肾) 流出物 环境科学 采出水 环境工程 污水处理 水处理 重新使用 人口 絮凝作用 水冷 工程类 化学 机械工程 生物化学 人口学 色谱法 社会学 入口
作者
Raluca Olariu
摘要

Taking into account the growing population, water scarcity is a relevant problem which needs to be addressed. Wastewater needs to be assured by quality, ecosystems protected and the wastewater reuse in industry should be a more common approach that would also assure the reduction of fresh water intake. Dow Chemicals decided to reduce the fresh water consumption by reusing the wastewater streams. Evides built a pilot plant in Terneuzen that will treat 3 water sources: rainwater, wastewater treatment plant effluent and cooling tower blowdown (CTBD) water. The biggest stream and the most difficult to treat is the CTBD water due to its high salinity and composition resulting after the evaporation process. Since the performance of the pilot was not very efficient and the ultrafiltration (UF) membrane suffered from rapid fouling during operation with CTBD, a solution to reduce the fouling was researched. First, the coagulation/flocculation step was evaluated. It is known that iron chloride used as coagulant will decrease the pH of solution, which will result in smaller and more difficult to settle flocs. For the improvement of the coagulation step a base was added together with the coagulant in order to keep the pH in the sweep coagulation zone. Since the focus of the research was on improving the UF operation, more attention was put into what could be the cause of it. It is known that in the cooling tower many chemicals are added to prevent corrosion, scaling or microbial growth. Of all chemicals, the biodispersant was the unknown solution which prevents microorganisms attaching to surfaces. The assumption made was that the biodispersant will form a layer on the membrane’s surfaces which causes the pressure increase after continuous operation. The nature of the biodispersant was investigated through surface tension and electrical-conductivity measurements and it was concluded that the biodispersant is a non-ionic surfactant. The critical micelle concentration was established to be 0.03 mg/l. CMC is the concentration above which the biodispersant is not only present as molecules, but it start forming micelles. The higher the concentration, the higher the number of micelles will be. When the concentration is equal with the CMC the solution is saturated with surfactant molecules which form a layer on the surfaces. Furthermore, the operation of the UF was observed in experiments with different biodispersant concentrations. Solutions of demiwater and Schie canal water with and without biodispersant were filtrated in order to observe the fouling behavior. It was indeed seen that the biodispersant is causing the fouling of the UF membrane and the backwashes did not help restore the initial membrane resistance. Experiments with powdered activated carbon (PAC) and clay were also performed to see if the adsorption of biodispersant was possible, but the results were not promising. For clay the adsorption area was too small and not much was adsorbed. For PAC, besides the biodispersant there are present other organics that will compete for adsorption. Because the surfactant concentration in the blowdown water was much higher than the CMC concentration (assumed 4 mg/l) experiment with solutions with surfactant concentration closer to the CMC were performed. It was observed that at a concentration of 0.1 mg/l biodispersant the fouling was much lower than the fouling increase recorded with solutions at 4 mg/l biodispersant and the backwashes were more efficient. At a biodispersant concentration of 0.1 mg/l the system is supposed to still be saturated. Therefore, it is assumed that the microbial growth should not be increased and the system’s behavior will not be affected by the decrease of biodispersant dosage. This statement should be further researched, but it a decrease in biodispersant dosage would not only result in a stable efficient operation of the pilot, but also lower operational cost, since less surfactant would be added in the cooling tower.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵雨霏完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
yy发布了新的文献求助30
4秒前
Charles完成签到,获得积分10
6秒前
李大了发布了新的文献求助30
8秒前
akber123完成签到,获得积分10
13秒前
Ss完成签到 ,获得积分10
13秒前
飞鸿影下完成签到 ,获得积分10
16秒前
空白格完成签到 ,获得积分10
17秒前
keke完成签到,获得积分10
19秒前
pencil123完成签到,获得积分10
19秒前
宇心完成签到,获得积分10
21秒前
微笑冰棍完成签到 ,获得积分10
21秒前
qqq完成签到 ,获得积分10
24秒前
科研通AI5应助机灵的笑南采纳,获得10
27秒前
铮铮完成签到,获得积分10
29秒前
小枣完成签到 ,获得积分10
32秒前
读研霹雳完成签到 ,获得积分10
34秒前
一梦三四年完成签到 ,获得积分10
34秒前
刻苦的小土豆完成签到 ,获得积分10
36秒前
李健应助栗子鱼采纳,获得10
38秒前
40秒前
咖啡豆完成签到,获得积分10
41秒前
42秒前
wang5945完成签到 ,获得积分10
42秒前
Tourist完成签到 ,获得积分10
42秒前
灵巧的导师完成签到,获得积分10
42秒前
physlicl发布了新的文献求助10
45秒前
45秒前
47秒前
啦啦啦发布了新的文献求助10
47秒前
彼岸花开发布了新的文献求助200
48秒前
www发布了新的文献求助10
48秒前
葛怀锐完成签到 ,获得积分10
50秒前
慕青应助duobao鱼采纳,获得10
51秒前
52秒前
Emma应助lvolt采纳,获得50
53秒前
MchemG完成签到,获得积分0
55秒前
孤芳自赏IrisKing完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959940
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128256
捐赠科研通 3238184
什么是DOI,文献DOI怎么找? 1789535
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803024