亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Treatment of cooling tower blowdown water: The effect of biodispersant on the ultrafiltration membrane

冷却塔 锅炉排污 废水 结垢 废物管理 反渗透 超滤(肾) 流出物 环境科学 采出水 环境工程 污水处理 水处理 重新使用 人口 絮凝作用 水冷 工程类 化学 人口学 入口 色谱法 社会学 生物化学 机械工程
作者
Raluca Olariu
摘要

Taking into account the growing population, water scarcity is a relevant problem which needs to be addressed. Wastewater needs to be assured by quality, ecosystems protected and the wastewater reuse in industry should be a more common approach that would also assure the reduction of fresh water intake. Dow Chemicals decided to reduce the fresh water consumption by reusing the wastewater streams. Evides built a pilot plant in Terneuzen that will treat 3 water sources: rainwater, wastewater treatment plant effluent and cooling tower blowdown (CTBD) water. The biggest stream and the most difficult to treat is the CTBD water due to its high salinity and composition resulting after the evaporation process. Since the performance of the pilot was not very efficient and the ultrafiltration (UF) membrane suffered from rapid fouling during operation with CTBD, a solution to reduce the fouling was researched. First, the coagulation/flocculation step was evaluated. It is known that iron chloride used as coagulant will decrease the pH of solution, which will result in smaller and more difficult to settle flocs. For the improvement of the coagulation step a base was added together with the coagulant in order to keep the pH in the sweep coagulation zone. Since the focus of the research was on improving the UF operation, more attention was put into what could be the cause of it. It is known that in the cooling tower many chemicals are added to prevent corrosion, scaling or microbial growth. Of all chemicals, the biodispersant was the unknown solution which prevents microorganisms attaching to surfaces. The assumption made was that the biodispersant will form a layer on the membrane’s surfaces which causes the pressure increase after continuous operation. The nature of the biodispersant was investigated through surface tension and electrical-conductivity measurements and it was concluded that the biodispersant is a non-ionic surfactant. The critical micelle concentration was established to be 0.03 mg/l. CMC is the concentration above which the biodispersant is not only present as molecules, but it start forming micelles. The higher the concentration, the higher the number of micelles will be. When the concentration is equal with the CMC the solution is saturated with surfactant molecules which form a layer on the surfaces. Furthermore, the operation of the UF was observed in experiments with different biodispersant concentrations. Solutions of demiwater and Schie canal water with and without biodispersant were filtrated in order to observe the fouling behavior. It was indeed seen that the biodispersant is causing the fouling of the UF membrane and the backwashes did not help restore the initial membrane resistance. Experiments with powdered activated carbon (PAC) and clay were also performed to see if the adsorption of biodispersant was possible, but the results were not promising. For clay the adsorption area was too small and not much was adsorbed. For PAC, besides the biodispersant there are present other organics that will compete for adsorption. Because the surfactant concentration in the blowdown water was much higher than the CMC concentration (assumed 4 mg/l) experiment with solutions with surfactant concentration closer to the CMC were performed. It was observed that at a concentration of 0.1 mg/l biodispersant the fouling was much lower than the fouling increase recorded with solutions at 4 mg/l biodispersant and the backwashes were more efficient. At a biodispersant concentration of 0.1 mg/l the system is supposed to still be saturated. Therefore, it is assumed that the microbial growth should not be increased and the system’s behavior will not be affected by the decrease of biodispersant dosage. This statement should be further researched, but it a decrease in biodispersant dosage would not only result in a stable efficient operation of the pilot, but also lower operational cost, since less surfactant would be added in the cooling tower.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LV完成签到 ,获得积分10
33秒前
脑洞疼应助catherine采纳,获得10
33秒前
学不完了完成签到 ,获得积分10
40秒前
Dou完成签到,获得积分10
48秒前
53秒前
白华苍松发布了新的文献求助20
1分钟前
Jasper应助白华苍松采纳,获得10
1分钟前
有机分子笼完成签到,获得积分10
1分钟前
Dou关注了科研通微信公众号
1分钟前
1分钟前
catherine发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小马甲应助JJ采纳,获得10
1分钟前
淡定自中发布了新的文献求助10
1分钟前
Yyyyyyyyy发布了新的文献求助10
1分钟前
mama完成签到 ,获得积分10
1分钟前
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
JJ发布了新的文献求助10
2分钟前
2分钟前
Nancy0818完成签到 ,获得积分10
2分钟前
科研通AI2S应助ceeray23采纳,获得20
2分钟前
BowieHuang应助cjh采纳,获得10
2分钟前
耶格尔完成签到 ,获得积分10
2分钟前
kikichiu应助ceeray23采纳,获得20
2分钟前
xaopng完成签到,获得积分10
2分钟前
ljx完成签到 ,获得积分10
2分钟前
端庄的曼梅完成签到 ,获得积分10
2分钟前
JJ完成签到,获得积分10
2分钟前
2分钟前
ddrose发布了新的文献求助10
2分钟前
亲爱的安德烈完成签到,获得积分10
2分钟前
安详的从筠完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543150
求助须知:如何正确求助?哪些是违规求助? 4629339
关于积分的说明 14611104
捐赠科研通 4570588
什么是DOI,文献DOI怎么找? 2505813
邀请新用户注册赠送积分活动 1483084
关于科研通互助平台的介绍 1454401