3D生物打印
挤压
材料科学
塑料挤出
生物医学工程
混合(物理)
同种类的
纳米材料
复合材料
纳米技术
组织工程
量子力学
医学
热力学
物理
作者
Amitava Bhattacharyya,Gopinathan Janarthanan,Hao Nguyen Tran,Hyung Jun Ham,Jeong‐Hyun Yoon,Insup Noh
标识
DOI:10.1016/j.cej.2021.128971
摘要
Abstract The 3D bioprinting of an advanced multicomponent bioink requires the homogeneous distribution of bioink components to control the biological and structural properties of the printed tissue engineering construct. To ensure the homogeneous mixing of micro/nanomaterials in a bioink and then bioprinting, currently, multiple preparation steps must be followed before feeding the bioink to the conventional bioprinting extruder head. To overcome these limitations, a real-time one-step process was obtained by developing a semi-automated twin-screw extruder (TSE) head to synchronously perform systematic mixing and 3D bioprinting. In this study, as a proof of concept, the parameter optimizations for semi-automated mixing of bioink components and 3D bioprinting with the TSE head were demonstrated with an ionic gel (alginate), alpha-tricalcium phosphate (α-TCP) micro/nanoparticles, and osteoblast cells. The TSE-processed bioink samples showed better bioprintability, with better mechanical and biological properties than the conventional ones. The micro/nanoparticles were uniformly dispersed in the bioink within 60 s of screw mixing them inside the barrel (with the barrel outlet closed). The live cell distribution in the printed constructs was significantly superior to conventional mixing even with continuous feeding and extrusion-based bioink printing. This novel extrusion head ensured the control of uniform micro/nanomaterials and cell distribution throughout the directly mixed printable bioink with minimal cell damage. Further, they delivered increased batch consistency in real time mixing and bioink printing owing to its highly efficient variable screw pitch design. Higher repeatability than the conventional method of bioink component mixing and its subsequent 3D bioprinting was obtained through increased automation, as well as reduced processing time, demonstrating strong potential in tissue engineering applications through the controlled mixing of bioink components and its 3D bioprinting without damaging the cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI