Self-Supervised Learning of Graph Neural Networks: A Unified Review

计算机科学 人工智能 分类 机器学习 人工神经网络 图形 试验台 理论计算机科学 计算机网络
作者
Yaochen Xie,Xu Zhao,Jingtun Zhang,Zhengyang Wang,Shuiwang Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (2): 2412-2429 被引量:227
标识
DOI:10.1109/tpami.2022.3170559
摘要

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zx发布了新的文献求助10
刚刚
刚刚
苗条一兰完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Jing发布了新的文献求助10
2秒前
2秒前
LJX发布了新的文献求助10
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
flyfish完成签到,获得积分10
3秒前
bckl888完成签到,获得积分10
3秒前
3秒前
ww发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
ding应助Wanderer采纳,获得10
5秒前
锅包肉爱吃肉完成签到 ,获得积分10
5秒前
HollidayLee完成签到,获得积分10
6秒前
6秒前
默默发布了新的文献求助10
6秒前
zx完成签到,获得积分10
7秒前
王川完成签到,获得积分10
7秒前
bayes111完成签到,获得积分20
7秒前
深情安青应助霍师傅采纳,获得10
8秒前
西鱼发布了新的文献求助10
8秒前
8秒前
Owen应助羊丢丢啊丢丢采纳,获得10
8秒前
旺旺发布了新的文献求助10
9秒前
wangyaofeng发布了新的文献求助10
9秒前
高子懿发布了新的文献求助10
9秒前
Quinn发布了新的文献求助10
9秒前
9秒前
小鹿完成签到,获得积分10
10秒前
c0uVi1完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515