Self-Supervised Learning of Graph Neural Networks: A Unified Review

计算机科学 人工智能 分类 机器学习 人工神经网络 图形 试验台 理论计算机科学 计算机网络
作者
Yaochen Xie,Xu Zhao,Jingtun Zhang,Zhengyang Wang,Shuiwang Ji
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (2): 2412-2429 被引量:227
标识
DOI:10.1109/tpami.2022.3170559
摘要

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助伶俐的血茗采纳,获得10
刚刚
zhengzhao完成签到,获得积分10
3秒前
4秒前
俗人完成签到,获得积分10
4秒前
Umar完成签到,获得积分10
6秒前
33完成签到,获得积分10
7秒前
mbl2006完成签到 ,获得积分10
9秒前
han完成签到,获得积分10
9秒前
9秒前
义气傲薇发布了新的文献求助10
11秒前
64658应助angrymax采纳,获得10
12秒前
LLL完成签到,获得积分10
12秒前
xzs完成签到,获得积分10
15秒前
月亮发布了新的文献求助20
18秒前
科研通AI2S应助漫漫采纳,获得10
22秒前
狂野的河马完成签到,获得积分10
22秒前
23秒前
ding应助Lee采纳,获得10
23秒前
angrymax完成签到,获得积分10
23秒前
suyu完成签到,获得积分10
23秒前
勤奋的松鼠完成签到,获得积分10
23秒前
星辰大海应助肉肉采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
西红柿炒鸡蛋完成签到,获得积分10
23秒前
fjh应助科研通管家采纳,获得30
23秒前
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得20
24秒前
fjh应助科研通管家采纳,获得30
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
研友_VZG7GZ应助科研通管家采纳,获得10
24秒前
24秒前
背后的鹭洋完成签到,获得积分10
24秒前
fjh应助科研通管家采纳,获得30
24秒前
英姑应助科研通管家采纳,获得30
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965984
求助须知:如何正确求助?哪些是违规求助? 3511325
关于积分的说明 11157405
捐赠科研通 3245882
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804286