Data augment method for machine fault diagnosis using conditional generative adversarial networks

鉴别器 计算机科学 生成语法 对抗制 人工智能 自编码 规范化(社会学) 机器学习 模式识别(心理学) 人工神经网络 人类学 电信 探测器 社会学
作者
Jinrui Wang,Baokun Han,Huaiqian Bao,Mingyan Wang,Zhenyun Chu,Yuwei Shen
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE Publishing]
卷期号:234 (12): 2719-2727 被引量:37
标识
DOI:10.1177/0954407020923258
摘要

As a useful data augmentation technique, generative adversarial networks have been successfully applied in fault diagnosis field. But traditional generative adversarial networks can only generate one category fault signals in one time, which is time-consuming and costly. To overcome this weakness, we develop a novel fault diagnosis method which combines conditional generative adversarial networks and stacked autoencoders, and both of them are built by stacking one-dimensional full connection layers. First, conditional generative adversarial networks is used to generate artificial samples based on the frequency samples, and category labels are adopted as the conditional information to simultaneously generate different category signals. Meanwhile, spectrum normalization is added to the discriminator of conditional generative adversarial networks to enhance the model training. Then, the augmented training samples are transferred to stacked autoencoders for feature extraction and fault classification. Finally, two datasets of bearing and gearbox are employed to investigate the effectiveness of the proposed conditional generative adversarial network–stacked autoencoder method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
999完成签到,获得积分10
刚刚
刚刚
1秒前
3秒前
4秒前
畅快的不言完成签到,获得积分10
4秒前
深情安青应助Landau采纳,获得10
5秒前
blawxx完成签到,获得积分10
5秒前
zhu2023发布了新的文献求助30
5秒前
6秒前
收手吧大哥应助Talk采纳,获得10
7秒前
LaLa给LaLa的求助进行了留言
7秒前
小怀完成签到 ,获得积分10
7秒前
斯文静竹发布了新的文献求助10
8秒前
张小咩咩完成签到 ,获得积分10
9秒前
田様应助17878362采纳,获得10
10秒前
内向的惜芹完成签到,获得积分10
10秒前
共享精神应助cc采纳,获得10
10秒前
暴躁的阁发布了新的文献求助10
11秒前
虾仁完成签到,获得积分10
12秒前
12秒前
Kiana完成签到,获得积分10
12秒前
斯文静竹完成签到,获得积分10
14秒前
花鸟风月evereo完成签到,获得积分10
14秒前
15秒前
16秒前
张华发布了新的文献求助10
17秒前
李爱国应助woa22采纳,获得10
18秒前
18秒前
19秒前
壮观士晋发布了新的文献求助10
19秒前
20秒前
xixi不嘻嘻发布了新的文献求助10
20秒前
20秒前
张萌完成签到 ,获得积分10
22秒前
深情安青应助逸之狐采纳,获得10
23秒前
洛森完成签到,获得积分10
23秒前
Akim应助xwzz采纳,获得30
24秒前
慧慧完成签到,获得积分10
24秒前
追寻盼烟发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958282
求助须知:如何正确求助?哪些是违规求助? 3504444
关于积分的说明 11118494
捐赠科研通 3235770
什么是DOI,文献DOI怎么找? 1788433
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802582