Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality

特征选择 粒子群优化 模式识别(心理学) 线性判别分析 人工智能 支持向量机 核(代数) 计算机科学 遗传算法 数学 数学优化 组合数学
作者
Guangxin Ren,Jingming Ning,Zhengzhu Zhang
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:245: 118918-118918 被引量:49
标识
DOI:10.1016/j.saa.2020.118918
摘要

The main objectives of the study are to understand and explore critical feature wavelengths of the obtained near-infrared (NIR) data relating to dianhong black tea quality categories, we propose a multi-variable selection strategy based on the variable space optimization from big to small which is the kernel idea of a variable combination of the improved genetic algorithm (IGA) and particle swarm optimization (PSO) in this study. A rapid description based on the NIR technology is implemented to assess black tea tenderness and rankings. First, 700 standard samples from dianhong black tea of seven quality classes are scanned using a NIR system. The raw spectra acquired are preprocessed by Savitzky-Golay (SG) filtering coupled with standard normal variate transformation (SNV). Then, the multi-variable selection algorithm (IGA-PSO) is applied to compare with the single method (the IGA and PSO) and search the optimal characteristic wavelengths. Finally, the identification models are developed using a decision tree (DT), partial least-squares discriminant analysis (PLS-DA), and support vector machine (SVM) based on different kernel functions combined with the effective features from the above variables screening paths for the discrimination of black tea quality. The results show that the IGA-PSO-SVM model with a radial basis function achieves the best predictive results with the correct discriminant rate (CDR) of 95.28% based on selected four characteristic variables in the prediction process. The overall results demonstrate that NIR combined with a multi-variable selection method can constitute a potential tool to understand the most important features involved in the evaluation of dianhong black tea quality helping the instrument manufacturers to achieve the development of low-cost and handheld NIR sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
执着艳完成签到 ,获得积分10
2秒前
爱静静应助Shalan采纳,获得20
2秒前
松谦发布了新的文献求助10
3秒前
5秒前
orixero应助医生采纳,获得10
5秒前
Hyperme完成签到,获得积分10
6秒前
活泼啤酒发布了新的文献求助10
9秒前
清脆的大船完成签到,获得积分10
10秒前
VPN不好用完成签到,获得积分10
12秒前
细腻新筠完成签到,获得积分10
13秒前
饱满的百招完成签到 ,获得积分10
15秒前
郝宝真发布了新的文献求助10
17秒前
忧虑的钻石应助松谦采纳,获得30
21秒前
昂口3完成签到 ,获得积分10
23秒前
科研通AI2S应助rebeycca采纳,获得10
23秒前
23秒前
快乐的雨竹完成签到,获得积分10
24秒前
Miss完成签到,获得积分10
24秒前
卖粥的果完成签到,获得积分10
25秒前
wu完成签到,获得积分10
25秒前
26秒前
29秒前
Dr.Tang完成签到 ,获得积分10
31秒前
31秒前
32秒前
zmk完成签到,获得积分10
33秒前
33秒前
单薄纸飞机完成签到,获得积分10
35秒前
zmk发布了新的文献求助10
36秒前
Allen发布了新的文献求助10
41秒前
pluto应助猜猜我是谁采纳,获得10
41秒前
重要白山完成签到 ,获得积分20
47秒前
nanda完成签到,获得积分10
48秒前
恰恰完成签到,获得积分10
48秒前
Li完成签到,获得积分10
49秒前
50秒前
猜猜我是谁完成签到,获得积分10
51秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388