石墨烯
氮气
密度泛函理论
催化作用
法拉第效率
材料科学
氧化还原
Atom(片上系统)
解吸
吸附
基面
电化学
电子结构
反应性(心理学)
化学物理
纳米技术
化学
化学工程
电极
结晶学
计算化学
物理化学
计算机科学
有机化学
嵌入式系统
病理
工程类
冶金
医学
替代医学
生物化学
作者
Fuping Pan,Boyang Li,Erik Sarnello,Yuhuan Fei,Xuhui Feng,Yang Gang,Xianmei Xiang,Lingzhe Fang,Tao Li,Yun Hang Hu,Guofeng Wang,Ying Li
出处
期刊:ACS Catalysis
日期:2020-09-02
卷期号:10 (19): 10803-10811
被引量:159
标识
DOI:10.1021/acscatal.0c02499
摘要
Hosting atomically dispersed nitrogen-coordinated iron sites (Fe–N4) on graphene offers unique opportunities for driving electrochemical CO2 reduction reaction (CO2RR) to CO. However, the strong adsorption of *CO on the Fe–N4 site embedded in intact graphene limits current density due to slow CO desorption process. Herein, we report how the manipulation of pore edges on graphene alters the local electronic structure of isolated Fe–N4 sites and improves their intrinsic reactivity for prompting CO generation. We demonstrate that constructing holes on graphene basal plane to support Fe–N4 can significantly enhance its CO2RR compared to the pore-deficient graphene-supported counterpart, exhibiting a CO Faradaic efficiency of 94% and a turnover frequency of 1630 h–1 at 0.58 V vs RHE. Mechanistic studies reveal that the incorporation of pore edges results in the downshifting of the d-band center of Fe sites, which weakens the strength of the Fe–C bond when the *CO intermediate adsorbs on edge-hosted Fe–N4, thus boosting the CO desorption and evolution rates. These findings suggest that engineering local support structure renders a way to design high-performance single-atom catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI