Pore-Edge Tailoring of Single-Atom Iron–Nitrogen Sites on Graphene for Enhanced CO2 Reduction

石墨烯 氮气 密度泛函理论 催化作用 法拉第效率 材料科学 氧化还原 Atom(片上系统) 解吸 吸附 基面 电化学 电子结构 反应性(心理学) 化学物理 纳米技术 化学 化学工程 电极 结晶学 计算化学 物理化学 计算机科学 有机化学 嵌入式系统 病理 工程类 冶金 医学 替代医学 生物化学
作者
Fuping Pan,Boyang Li,Erik Sarnello,Yuhuan Fei,Xuhui Feng,Yang Gang,Xianmei Xiang,Lingzhe Fang,Tao Li,Yun Hang Hu,Guofeng Wang,Ying Li
出处
期刊:ACS Catalysis 卷期号:10 (19): 10803-10811 被引量:159
标识
DOI:10.1021/acscatal.0c02499
摘要

Hosting atomically dispersed nitrogen-coordinated iron sites (Fe–N4) on graphene offers unique opportunities for driving electrochemical CO2 reduction reaction (CO2RR) to CO. However, the strong adsorption of *CO on the Fe–N4 site embedded in intact graphene limits current density due to slow CO desorption process. Herein, we report how the manipulation of pore edges on graphene alters the local electronic structure of isolated Fe–N4 sites and improves their intrinsic reactivity for prompting CO generation. We demonstrate that constructing holes on graphene basal plane to support Fe–N4 can significantly enhance its CO2RR compared to the pore-deficient graphene-supported counterpart, exhibiting a CO Faradaic efficiency of 94% and a turnover frequency of 1630 h–1 at 0.58 V vs RHE. Mechanistic studies reveal that the incorporation of pore edges results in the downshifting of the d-band center of Fe sites, which weakens the strength of the Fe–C bond when the *CO intermediate adsorbs on edge-hosted Fe–N4, thus boosting the CO desorption and evolution rates. These findings suggest that engineering local support structure renders a way to design high-performance single-atom catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助troubadourelf采纳,获得10
刚刚
勤恳慕蕊发布了新的文献求助10
1秒前
1秒前
kxy完成签到,获得积分10
4秒前
4秒前
婧婧完成签到 ,获得积分10
4秒前
5秒前
6秒前
左友铭完成签到 ,获得积分10
6秒前
sweetbearm应助通~采纳,获得10
6秒前
AKLIZE完成签到,获得积分10
6秒前
刘大妮完成签到,获得积分10
7秒前
clean完成签到,获得积分20
8秒前
Lucas发布了新的文献求助10
8秒前
8秒前
朴实以松发布了新的文献求助10
8秒前
感谢橘子转发科研通微信,获得积分50
8秒前
围炉煮茶完成签到,获得积分10
9秒前
9秒前
云锋发布了新的文献求助10
10秒前
兴奋的问旋应助务实盼海采纳,获得10
10秒前
李秋静发布了新的文献求助10
10秒前
10秒前
无花果应助cookie采纳,获得10
11秒前
11秒前
斯文败类应助阳尧采纳,获得10
11秒前
12秒前
12秒前
abjz完成签到,获得积分10
12秒前
三千弱水为君饮完成签到,获得积分10
13秒前
13秒前
cata完成签到,获得积分10
13秒前
感谢79转发科研通微信,获得积分50
13秒前
13秒前
troubadourelf发布了新的文献求助10
14秒前
frank发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
感谢超帅冬易转发科研通微信,获得积分50
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794