Recovering from missing data in population imaging – Cardiac MR image imputation via conditional generative adversarial nets

缺少数据 插补(统计学) 人工智能 对抗制 人口 生成语法 计算机科学 生成对抗网络 模式识别(心理学) 图像(数学) 数学 计算机视觉 机器学习 医学 环境卫生
作者
Yan Xia,Le Zhang,Nishant Ravikumar,Rahman Attar,Stefan K. Piechnik,Stefan Neubauer,Steffen E. Petersen,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:67: 101812-101812 被引量:22
标识
DOI:10.1016/j.media.2020.101812
摘要

Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ringing and signal loss in CMR sequences, significantly hinder accuracy of anatomical and functional cardiac quantification, and recovering from those is insufficiently addressed in population imaging. In this work, we propose a new robust approach, coined Image Imputation Generative Adversarial Network (I2-GAN), to learn key features of cardiac short axis (SAX) slices near missing information, and use them as conditional variables to infer missing slices in the query volumes. In I2-GAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold, conditioned on intensity features through a generator net. The generator comprises residual blocks with normalisation layers that are modulated with auxiliary slice information, enabling propagation of fine details through the network. In addition, a multi-scale discriminator was implemented, along with a discriminator-based feature matching loss, to further enhance performance and encourage the synthesis of visually realistic slices. Experimental results show that our method achieves significant improvements over the state-of-the-art, in missing slice imputation for CMR, with an average SSIM of 0.872. Linear regression analysis yields good agreement between reference and imputed CMR images for all cardiac measurements, with correlation coefficients of 0.991 for left ventricular volume, 0.977 for left ventricular mass and 0.961 for right ventricular volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
破伤疯发布了新的文献求助30
1秒前
安生发布了新的文献求助10
2秒前
2秒前
6秒前
Lucas应助yangkeke采纳,获得10
8秒前
桐桐应助在下观海丶采纳,获得10
10秒前
10秒前
11秒前
11秒前
墨兮完成签到,获得积分10
12秒前
13秒前
不会踢球的作家不是好大夫完成签到,获得积分10
14秒前
AIT完成签到,获得积分10
15秒前
安生完成签到 ,获得积分20
16秒前
梅伊斯完成签到 ,获得积分10
16秒前
单眼皮完成签到,获得积分10
16秒前
墨兮发布了新的文献求助10
16秒前
皛皛应助江城一霸采纳,获得10
17秒前
18秒前
18秒前
Akim应助宝贝充电站采纳,获得10
19秒前
Billy应助糊涂涂采纳,获得10
23秒前
悠然发布了新的文献求助10
23秒前
23秒前
23秒前
23秒前
康康发布了新的文献求助10
24秒前
Lucia发布了新的文献求助30
25秒前
欢呼的鲂完成签到,获得积分10
25秒前
皮卡皮卡丘完成签到,获得积分10
26秒前
26秒前
lynn_zhang完成签到,获得积分10
28秒前
28秒前
琪琪琪发布了新的文献求助10
29秒前
JamesPei应助爱幻想的青柠采纳,获得10
30秒前
Naveed完成签到,获得积分10
31秒前
赘婿应助Zx采纳,获得10
31秒前
32秒前
汤圆圆儿完成签到,获得积分10
33秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136067
求助须知:如何正确求助?哪些是违规求助? 2786953
关于积分的说明 7779912
捐赠科研通 2443071
什么是DOI,文献DOI怎么找? 1298892
科研通“疑难数据库(出版商)”最低求助积分说明 625244
版权声明 600870