Recovering from missing data in population imaging – Cardiac MR image imputation via conditional generative adversarial nets

缺少数据 插补(统计学) 人工智能 对抗制 人口 生成语法 计算机科学 生成对抗网络 模式识别(心理学) 图像(数学) 数学 计算机视觉 机器学习 医学 环境卫生
作者
Yan Xia,Le Zhang,Nishant Ravikumar,Rahman Attar,Stefan K. Piechnik,Stefan Neubauer,Steffen E. Petersen,Alejandro F. Frangi
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:67: 101812-101812 被引量:22
标识
DOI:10.1016/j.media.2020.101812
摘要

Accurate ventricular volume measurements are the primary indicators of normal/abnor- mal cardiac function and are dependent on the Cardiac Magnetic Resonance (CMR) volumes being complete. However, missing or unusable slices owing to the presence of image artefacts such as respiratory or motion ghosting, aliasing, ringing and signal loss in CMR sequences, significantly hinder accuracy of anatomical and functional cardiac quantification, and recovering from those is insufficiently addressed in population imaging. In this work, we propose a new robust approach, coined Image Imputation Generative Adversarial Network (I2-GAN), to learn key features of cardiac short axis (SAX) slices near missing information, and use them as conditional variables to infer missing slices in the query volumes. In I2-GAN, the slices are first mapped to latent vectors with position features through a regression net. The latent vector corresponding to the desired position is then projected onto the slice manifold, conditioned on intensity features through a generator net. The generator comprises residual blocks with normalisation layers that are modulated with auxiliary slice information, enabling propagation of fine details through the network. In addition, a multi-scale discriminator was implemented, along with a discriminator-based feature matching loss, to further enhance performance and encourage the synthesis of visually realistic slices. Experimental results show that our method achieves significant improvements over the state-of-the-art, in missing slice imputation for CMR, with an average SSIM of 0.872. Linear regression analysis yields good agreement between reference and imputed CMR images for all cardiac measurements, with correlation coefficients of 0.991 for left ventricular volume, 0.977 for left ventricular mass and 0.961 for right ventricular volume.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨兔儿完成签到,获得积分10
刚刚
1秒前
1秒前
zhhhh03发布了新的文献求助10
2秒前
sunrise完成签到,获得积分10
4秒前
4秒前
蝌蚪发布了新的文献求助30
4秒前
4秒前
wangjingni完成签到,获得积分20
6秒前
6秒前
可靠的书本完成签到,获得积分10
6秒前
Gengar发布了新的文献求助10
7秒前
7秒前
一一完成签到 ,获得积分10
8秒前
Siso完成签到,获得积分10
9秒前
9秒前
wangjingni发布了新的文献求助10
9秒前
天天快乐应助酷炫觅松采纳,获得10
9秒前
思源应助蝌蚪采纳,获得10
11秒前
果果发布了新的文献求助10
11秒前
11秒前
葵花杜甫完成签到,获得积分10
13秒前
www完成签到 ,获得积分10
14秒前
斯文败类应助honey采纳,获得10
14秒前
14秒前
李健的小迷弟应助Siso采纳,获得10
14秒前
15秒前
自信雅琴发布了新的文献求助10
15秒前
16秒前
勤劳诗云应助lant0ng采纳,获得50
17秒前
一匹野马发布了新的文献求助10
19秒前
wyx发布了新的文献求助10
20秒前
20秒前
ccx发布了新的文献求助10
20秒前
Hello应助葵花杜甫采纳,获得20
21秒前
oh应助果果采纳,获得10
21秒前
22秒前
加绒完成签到,获得积分10
22秒前
郭1994完成签到 ,获得积分10
23秒前
Gengar发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014