强化学习
模型预测控制
控制器(灌溉)
动态规划
控制理论(社会学)
计算机科学
马尔可夫决策过程
能源管理
插件
随机规划
随机控制
功率(物理)
最优控制
马尔可夫过程
控制工程
工程类
能量(信号处理)
数学优化
控制(管理)
人工智能
算法
数学
物理
程序设计语言
统计
生物
量子力学
农学
作者
Zheng Chen,Hengjie Hu,Yitao Wu,Hongjie Zhang,Guang Li,Yonggang Liu
出处
期刊:Energy
[Elsevier]
日期:2020-11-01
卷期号:211: 118931-118931
被引量:57
标识
DOI:10.1016/j.energy.2020.118931
摘要
In this paper, a stochastic model predictive control (MPC) method based on reinforcement learning is proposed for energy management of plug-in hybrid electric vehicles (PHEVs). Firstly, the power transfer of each component in a power-split PHEV is described in detail. Then an effective and convergent reinforcement learning controller is trained by the Q-learning algorithm according to the driving power distribution under multiple driving cycles. By constructing a multi-step Markov velocity prediction model, the reinforcement learning controller is embedded into the stochastic MPC controller to determine the optimal battery power in predicted time domain. Numerical simulation results verify that the proposed method achieves superior fuel economy that is close to that by stochastic dynamic programming method. In addition, the effective state of charge tracking in terms of different reference trajectories highlight that the proposed method is effective for online application requiring a fast calculation speed.
科研通智能强力驱动
Strongly Powered by AbleSci AI