Classification with a disordered dopant-atom network in silicon

计算机科学 人工神经网络 人工智能 非线性系统 利用 模式识别(心理学) 机器学习 物理 计算机安全 量子力学
作者
Tao Chen,Jeroen van Gelder,Bram van de Ven,Sergey V. Amitonov,Bram de Wilde,Hans-Christian Ruiz Euler,Hajo Broersma,P. A. Bobbert,Floris A. Zwanenburg,Wilfred G. van der Wiel
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7790): 341-345 被引量:79
标识
DOI:10.1038/s41586-019-1901-0
摘要

Classification is an important task at which both biological and artificial neural networks excel1,2. In machine learning, nonlinear projection into a high-dimensional feature space can make data linearly separable3,4, simplifying the classification of complex features. Such nonlinear projections are computationally expensive in conventional computers. A promising approach is to exploit physical materials systems that perform this nonlinear projection intrinsically, because of their high computational density5, inherent parallelism and energy efficiency6,7. However, existing approaches either rely on the systems' time dynamics, which requires sequential data processing and therefore hinders parallel computation5,6,8, or employ large materials systems that are difficult to scale up7. Here we use a parallel, nanoscale approach inspired by filters in the brain1 and artificial neural networks2 to perform nonlinear classification and feature extraction. We exploit the nonlinearity of hopping conduction9-11 through an electrically tunable network of boron dopant atoms in silicon, reconfiguring the network through artificial evolution to realize different computational functions. We first solve the canonical two-input binary classification problem, realizing all Boolean logic gates12 up to room temperature, demonstrating nonlinear classification with the nanomaterial system. We then evolve our dopant network to realize feature filters2 that can perform four-input binary classification on the Modified National Institute of Standards and Technology handwritten digit database. Implementation of our material-based filters substantially improves the classification accuracy over that of a linear classifier directly applied to the original data13. Our results establish a paradigm of silicon-based electronics for small-footprint and energy-efficient computation14.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
刚刚
桐桐应助任性唇膏采纳,获得10
刚刚
1秒前
zfh1341发布了新的文献求助10
1秒前
2秒前
chenng发布了新的文献求助10
2秒前
2秒前
2秒前
xixixi完成签到,获得积分10
2秒前
bob完成签到,获得积分10
2秒前
shifeng发布了新的文献求助10
3秒前
wyx发布了新的文献求助10
3秒前
3秒前
Akim应助偷乐采纳,获得10
4秒前
钢笔完成签到,获得积分10
4秒前
zzzb发布了新的文献求助10
4秒前
JamesPei应助Lei采纳,获得10
4秒前
小红书求接接接接一篇完成签到,获得积分10
5秒前
夏夜完成签到 ,获得积分10
5秒前
小辣椒完成签到,获得积分20
5秒前
tjuer完成签到,获得积分10
5秒前
牛牛完成签到 ,获得积分10
6秒前
6秒前
笙默0329发布了新的文献求助10
7秒前
happy发布了新的文献求助20
7秒前
钢笔发布了新的文献求助10
9秒前
wyx关闭了wyx文献求助
9秒前
ZX801完成签到 ,获得积分10
9秒前
zzzb完成签到,获得积分10
9秒前
笑点低代萱完成签到,获得积分10
10秒前
李总要发财小苏发文章完成签到,获得积分10
11秒前
李爱国应助亲爱的安德烈采纳,获得10
11秒前
wangjiangtao完成签到,获得积分10
11秒前
丫丫发布了新的文献求助10
12秒前
13秒前
小巧的面包完成签到,获得积分20
13秒前
15秒前
15秒前
16秒前
linakg完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014