Automated detection & classification of knee arthroplasty using deep learning

医学 单室膝关节置换术 射线照相术 接收机工作特性 关节置换术 假肢 深度学习 人工智能 卷积神经网络 骨关节炎 放射科 外科 计算机科学 内科学 病理 替代医学
作者
Paul H. Yi,Jinchi Wei,Tae Kyung Kim,Haris I. Sair,Ferdinand Hui,Gregory D. Hager,Jan Fritz,Julius K. Oni
出处
期刊:Knee [Elsevier]
卷期号:27 (2): 535-542 被引量:65
标识
DOI:10.1016/j.knee.2019.11.020
摘要

Background Preoperative identification of knee arthroplasty is important for planning revision surgery. However, up to 10% of implants are not identified prior to surgery. The purposes of this study were to develop and test the performance of a deep learning system (DLS) for the automated radiographic 1) identification of the presence or absence of a total knee arthroplasty (TKA); 2) classification of TKA vs. unicompartmental knee arthroplasty (UKA); and 3) differentiation between two different primary TKA models. Method We collected 237 anteroposterior (AP) knee radiographs with equal proportions of native knees, TKA, and UKA and 274 AP knee radiographs with equal proportions of two TKA models. Data augmentation was used to increase the number of images for deep convolutional neural network (DCNN) training. A DLS based on DCNNs was trained on these images. Receiver operating characteristic (ROC) curves with area under the curve (AUC) were generated. Heatmaps were created using class activation mapping (CAM) to identify image features most important for DCNN decision-making. Results DCNNs trained to detect TKA and distinguish between TKA and UKA both achieved AUC of 1. Heatmaps demonstrated appropriate emphasis of arthroplasty components in decision-making. The DCNN trained to distinguish between the two TKA models achieved AUC of 1. Heatmaps showed emphasis of specific unique features of the TKA model designs, such as the femoral component anterior flange shape. Conclusions DCNNs can accurately identify presence of TKA and distinguish between specific arthroplasty designs. This proof-of-concept could be applied towards identifying other prosthesis models and prosthesis-related complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶无施完成签到,获得积分10
刚刚
wanzhitao发布了新的文献求助10
2秒前
2秒前
我是老大应助潺潺流水采纳,获得10
3秒前
修管子发布了新的文献求助10
4秒前
5秒前
5秒前
万能图书馆应助熊大哥采纳,获得10
5秒前
情怀应助咖啡先生采纳,获得10
5秒前
小柒发布了新的文献求助10
5秒前
ramsey33发布了新的文献求助20
5秒前
是十二呀发布了新的文献求助10
5秒前
小二郎应助zzzlk采纳,获得30
5秒前
义气萝卜头完成签到 ,获得积分10
6秒前
nie完成签到,获得积分10
7秒前
李健应助余白薇采纳,获得10
8秒前
8秒前
zhengjianlong完成签到,获得积分10
9秒前
lalala完成签到,获得积分10
9秒前
singlestrand完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
zho应助科研通管家采纳,获得10
11秒前
Jiang应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得100
11秒前
科目三应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
上官若男应助贤惠的豪英采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得30
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
12秒前
小二郎应助科研通管家采纳,获得30
12秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158178
求助须知:如何正确求助?哪些是违规求助? 2809497
关于积分的说明 7882282
捐赠科研通 2467982
什么是DOI,文献DOI怎么找? 1313837
科研通“疑难数据库(出版商)”最低求助积分说明 630558
版权声明 601943