Automated detection & classification of knee arthroplasty using deep learning

医学 单室膝关节置换术 射线照相术 接收机工作特性 关节置换术 假肢 深度学习 人工智能 卷积神经网络 骨关节炎 放射科 外科 计算机科学 内科学 病理 替代医学
作者
Paul H. Yi,Jinchi Wei,Tae Kyung Kim,Haris I. Sair,Ferdinand Hui,Gregory D. Hager,Jan Fritz,Julius K. Oni
出处
期刊:Knee [Elsevier BV]
卷期号:27 (2): 535-542 被引量:65
标识
DOI:10.1016/j.knee.2019.11.020
摘要

Background Preoperative identification of knee arthroplasty is important for planning revision surgery. However, up to 10% of implants are not identified prior to surgery. The purposes of this study were to develop and test the performance of a deep learning system (DLS) for the automated radiographic 1) identification of the presence or absence of a total knee arthroplasty (TKA); 2) classification of TKA vs. unicompartmental knee arthroplasty (UKA); and 3) differentiation between two different primary TKA models. Method We collected 237 anteroposterior (AP) knee radiographs with equal proportions of native knees, TKA, and UKA and 274 AP knee radiographs with equal proportions of two TKA models. Data augmentation was used to increase the number of images for deep convolutional neural network (DCNN) training. A DLS based on DCNNs was trained on these images. Receiver operating characteristic (ROC) curves with area under the curve (AUC) were generated. Heatmaps were created using class activation mapping (CAM) to identify image features most important for DCNN decision-making. Results DCNNs trained to detect TKA and distinguish between TKA and UKA both achieved AUC of 1. Heatmaps demonstrated appropriate emphasis of arthroplasty components in decision-making. The DCNN trained to distinguish between the two TKA models achieved AUC of 1. Heatmaps showed emphasis of specific unique features of the TKA model designs, such as the femoral component anterior flange shape. Conclusions DCNNs can accurately identify presence of TKA and distinguish between specific arthroplasty designs. This proof-of-concept could be applied towards identifying other prosthesis models and prosthesis-related complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助wsgdhz采纳,获得10
刚刚
王小可发布了新的文献求助10
刚刚
务实的不二完成签到,获得积分10
刚刚
七七发布了新的文献求助30
1秒前
fvb发布了新的文献求助10
1秒前
ceo关闭了ceo文献求助
2秒前
2秒前
2秒前
2秒前
MZ完成签到,获得积分0
3秒前
wogua发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
充电宝应助DG采纳,获得10
4秒前
yydsyyd发布了新的文献求助50
4秒前
123发布了新的文献求助10
5秒前
6秒前
科研通AI5应助酷炫雨采纳,获得10
7秒前
非晚发布了新的文献求助10
7秒前
yin发布了新的文献求助10
7秒前
陶兜兜发布了新的文献求助10
8秒前
ding应助江柊采纳,获得10
8秒前
8秒前
clear发布了新的文献求助10
10秒前
和谐竺完成签到 ,获得积分10
10秒前
11秒前
喜欢玩辅助完成签到,获得积分10
11秒前
11秒前
嘎嘎乐发布了新的文献求助10
11秒前
11秒前
玖玖完成签到,获得积分10
12秒前
12秒前
12秒前
科研通AI5应助二柱子采纳,获得10
12秒前
贪玩火锅完成签到 ,获得积分10
14秒前
完美世界应助科研狗采纳,获得10
14秒前
虚心听筠完成签到,获得积分10
14秒前
执着绿草发布了新的文献求助10
15秒前
15秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403