Automated detection & classification of knee arthroplasty using deep learning

医学 单室膝关节置换术 射线照相术 接收机工作特性 关节置换术 假肢 深度学习 人工智能 卷积神经网络 骨关节炎 放射科 外科 计算机科学 内科学 病理 替代医学
作者
Paul H. Yi,Jinchi Wei,Tae Kyung Kim,Haris I. Sair,Ferdinand Hui,Gregory D. Hager,Jan Fritz,Julius K. Oni
出处
期刊:Knee [Elsevier]
卷期号:27 (2): 535-542 被引量:75
标识
DOI:10.1016/j.knee.2019.11.020
摘要

Background Preoperative identification of knee arthroplasty is important for planning revision surgery. However, up to 10% of implants are not identified prior to surgery. The purposes of this study were to develop and test the performance of a deep learning system (DLS) for the automated radiographic 1) identification of the presence or absence of a total knee arthroplasty (TKA); 2) classification of TKA vs. unicompartmental knee arthroplasty (UKA); and 3) differentiation between two different primary TKA models. Method We collected 237 anteroposterior (AP) knee radiographs with equal proportions of native knees, TKA, and UKA and 274 AP knee radiographs with equal proportions of two TKA models. Data augmentation was used to increase the number of images for deep convolutional neural network (DCNN) training. A DLS based on DCNNs was trained on these images. Receiver operating characteristic (ROC) curves with area under the curve (AUC) were generated. Heatmaps were created using class activation mapping (CAM) to identify image features most important for DCNN decision-making. Results DCNNs trained to detect TKA and distinguish between TKA and UKA both achieved AUC of 1. Heatmaps demonstrated appropriate emphasis of arthroplasty components in decision-making. The DCNN trained to distinguish between the two TKA models achieved AUC of 1. Heatmaps showed emphasis of specific unique features of the TKA model designs, such as the femoral component anterior flange shape. Conclusions DCNNs can accurately identify presence of TKA and distinguish between specific arthroplasty designs. This proof-of-concept could be applied towards identifying other prosthesis models and prosthesis-related complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖婉婷完成签到,获得积分10
刚刚
BowieHuang应助SSY采纳,获得10
刚刚
稳中的豆沙包完成签到 ,获得积分10
1秒前
媛媛完成签到,获得积分10
1秒前
鲁木发布了新的文献求助10
2秒前
33完成签到,获得积分10
2秒前
chen01hang应助我不是BOB采纳,获得50
3秒前
李健应助彬彬发文章采纳,获得10
3秒前
Honahlee完成签到,获得积分10
3秒前
马明旋发布了新的文献求助20
4秒前
4秒前
5秒前
852应助strongfrog采纳,获得10
5秒前
科研通AI6应助清秀送终采纳,获得10
6秒前
6秒前
6秒前
6秒前
CipherSage应助TearMarks采纳,获得10
6秒前
silin完成签到,获得积分10
6秒前
小豆包完成签到,获得积分20
7秒前
xttju2014发布了新的文献求助10
7秒前
7秒前
super完成签到,获得积分20
8秒前
8秒前
Ak完成签到,获得积分0
8秒前
田小班发布了新的文献求助10
9秒前
Irene发布了新的文献求助10
9秒前
认真日记本完成签到 ,获得积分10
9秒前
www发布了新的文献求助10
9秒前
10秒前
桐桐应助哈哈哈哈哈哈采纳,获得10
10秒前
李小莉0419发布了新的文献求助10
10秒前
Ava应助MC采纳,获得10
11秒前
baobaot发布了新的文献求助30
11秒前
11秒前
承乐应助小豆包采纳,获得10
11秒前
英姑应助小豆包采纳,获得10
11秒前
秋寒完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
斯文败类应助mikiisme采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608407
求助须知:如何正确求助?哪些是违规求助? 4693040
关于积分的说明 14876313
捐赠科研通 4717445
什么是DOI,文献DOI怎么找? 2544206
邀请新用户注册赠送积分活动 1509230
关于科研通互助平台的介绍 1472836