Automated detection & classification of knee arthroplasty using deep learning

医学 单室膝关节置换术 射线照相术 接收机工作特性 关节置换术 假肢 深度学习 人工智能 卷积神经网络 骨关节炎 放射科 外科 计算机科学 内科学 病理 替代医学
作者
Paul H. Yi,Jinchi Wei,Tae Kyung Kim,Haris I. Sair,Ferdinand Hui,Gregory D. Hager,Jan Fritz,Julius K. Oni
出处
期刊:Knee [Elsevier BV]
卷期号:27 (2): 535-542 被引量:65
标识
DOI:10.1016/j.knee.2019.11.020
摘要

Background Preoperative identification of knee arthroplasty is important for planning revision surgery. However, up to 10% of implants are not identified prior to surgery. The purposes of this study were to develop and test the performance of a deep learning system (DLS) for the automated radiographic 1) identification of the presence or absence of a total knee arthroplasty (TKA); 2) classification of TKA vs. unicompartmental knee arthroplasty (UKA); and 3) differentiation between two different primary TKA models. Method We collected 237 anteroposterior (AP) knee radiographs with equal proportions of native knees, TKA, and UKA and 274 AP knee radiographs with equal proportions of two TKA models. Data augmentation was used to increase the number of images for deep convolutional neural network (DCNN) training. A DLS based on DCNNs was trained on these images. Receiver operating characteristic (ROC) curves with area under the curve (AUC) were generated. Heatmaps were created using class activation mapping (CAM) to identify image features most important for DCNN decision-making. Results DCNNs trained to detect TKA and distinguish between TKA and UKA both achieved AUC of 1. Heatmaps demonstrated appropriate emphasis of arthroplasty components in decision-making. The DCNN trained to distinguish between the two TKA models achieved AUC of 1. Heatmaps showed emphasis of specific unique features of the TKA model designs, such as the femoral component anterior flange shape. Conclusions DCNNs can accurately identify presence of TKA and distinguish between specific arthroplasty designs. This proof-of-concept could be applied towards identifying other prosthesis models and prosthesis-related complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助poke采纳,获得10
刚刚
刚刚
1秒前
天然呆的最可爱完成签到,获得积分20
1秒前
友好碧灵完成签到,获得积分10
1秒前
黎明发布了新的文献求助10
2秒前
科研狗完成签到,获得积分10
2秒前
gui发布了新的文献求助10
2秒前
敬老院N号应助xiaoqi采纳,获得30
3秒前
3秒前
3秒前
sunj完成签到,获得积分10
3秒前
文艺的芫发布了新的文献求助10
4秒前
王宁发布了新的文献求助30
4秒前
打打应助up采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
结实蜡烛发布了新的文献求助10
7秒前
louyu完成签到 ,获得积分0
7秒前
我先睡了发布了新的文献求助10
7秒前
深情的迎海完成签到,获得积分10
7秒前
希柚完成签到 ,获得积分10
7秒前
9秒前
Giroro_roro发布了新的文献求助10
9秒前
陈开心完成签到,获得积分10
10秒前
花生发布了新的文献求助10
10秒前
10秒前
不秃头发布了新的文献求助20
10秒前
瞿亭龙完成签到,获得积分10
10秒前
闪闪的梦柏完成签到,获得积分10
10秒前
10秒前
xiaohu完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620