Occurrence and significance of Fusarium and Trichoderma ear rot in maize

镰刀菌 生物 真菌毒素 农学 赤霉素 作物 伏马菌素 接种 兽医学 园艺 植物 医学
作者
Annette Pfordt
标识
DOI:10.53846/goediss-8267
摘要

Ear rots, caused by fungi, are among the most important maize diseases worldwide causing severe yield losses and a reduction of grain quality. Several toxigenic Fusarium species are known to cause yield losses and reduce grain quality, thus endangering the safety of both animal feed and human food products. For this purpose, we investigated the occurrence and significance of Fusarium and Trichoderma ear rot on maize in Germany. Within this framework, we evaluated the impact of environmental conditions and agronomic practices on the prevalence of Fusarium species associated with ear and stalk rot. The most frequent Fusarium species detected in maize ears were Fusarium graminearum, F. verticillioides and F. temperatum, while F. graminearum, F. equiseti, F. culmorum and F. temperatum were the species prevailing on maize stalks. The results indicate that mean temperature and precipitation in July, during flowering, has the strongest impact on the local range of Fusarium species on ears, whereas the incidence of Fusarium species on stalks is mostly affected by weather conditions during September. Ploughing significantly reduced the infection with F. graminearum and F. temperatum, while crop rotation exerted only minor effects. Another aim of the present study was to determine the occurrence, mycotoxin production and pathogenicity of Fusarium temperatum from maize in Germany. For this purpose, a Germany-wide monitoring of maize ears and stalks was carried out in 2017 and 2018. Within this monitoring, 79 isolates of F. temperatum and seven isolates of F. subglutinans were obtained. Inoculation of maize ears revealed the highest aggressiveness of F. temperatum, followed by F. graminearum, and F. verticillioides and F. subglutinans. The temperature optima for infection of maize ears with F. temperatum and F. subglutinans were 24 °C and 21 °C, respectively. Artificially induced infection of wheat ears with all strains of F. temperatum and F. subglutinans caused head blight symptoms, thus indicating wheat as an alternative host. The results demonstrate the increasing importance of F. temperatum in German maize cultivation areas. Thirdly, we investigated the aggressiveness of several Fusarium species in maize in relation to inoculation method, maize variety and location. Therefore, in 2018 and 2019, maize hybrids were tested in four locations (Bernburg, Rustenhart, Kuenzing and Liesborn) in Germany and France. Our results showed that F. temperatum was the most aggressive Fusarium species in both years followed by F. graminearum and F. verticillioides, however, the prevalence differed between locations. Significant differences in genotypic resistance depending on the inoculation method and Fusarium species were found in all locations. In 2018, massive infections with Trichoderma on maize ears were recorded for the first time in a field in Southern Germany. Within this study, first investigations were conducted to identify and verify Trichoderma as a new pathogen causing ear rot disease on maize in Europe. In 2018 and 2019, a total of 13 T. harzianum isolates from maize cobs and maize stalks were isolated and tested, compared to several reference isolates. Four isolates proved to be highly aggressive, two biocontrol isolates, Trichodex (T39) and strain T12, induced slight infection and eleven isolates were non-pathogenic. This, to our knowledge, is the first report on Trichoderma sp. as a pathogen causing ear rot disease in maize in Europe with the potential to incite significant yield losses. We therefore propose to name this disease as ‚Trichoderma ear rot on maize‘.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助yiyiyi采纳,获得10
刚刚
臧佳莹完成签到,获得积分20
刚刚
Ava应助有魅力的哈密瓜采纳,获得10
1秒前
2秒前
2秒前
生生不息发布了新的文献求助10
3秒前
跳跃仙人掌应助HaojunWang采纳,获得10
3秒前
SongAce完成签到,获得积分20
3秒前
5秒前
坦率若魔完成签到,获得积分10
5秒前
5秒前
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
7秒前
鲤鱼初柳发布了新的文献求助30
7秒前
dsaifjs发布了新的文献求助10
7秒前
8秒前
SongAce发布了新的文献求助10
8秒前
RockLee完成签到,获得积分10
8秒前
9秒前
毛毛毛毛小毛完成签到,获得积分10
10秒前
不安青牛应助YOLO采纳,获得10
10秒前
深情安青应助LennonYin采纳,获得10
11秒前
一原君发布了新的文献求助10
11秒前
chloe发布了新的文献求助10
11秒前
F0发布了新的文献求助10
11秒前
pink发布了新的文献求助10
12秒前
sabrina完成签到,获得积分10
13秒前
13秒前
13秒前
元水云发布了新的文献求助30
14秒前
14秒前
柿饼完成签到,获得积分10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721