A general multi-agent epistemic planner based on higher-order belief change

规划师 计算机科学 实施 人工智能 情境演算 信念修正 订单(交换) 代表(政治) 知识表示与推理 理论计算机科学 程序设计语言 财务 政治 政治学 法学 经济
作者
Hai Wan,Biqing Fang,Yongmei Liu
出处
期刊:Artificial Intelligence [Elsevier]
卷期号:301: 103562-103562 被引量:9
标识
DOI:10.1016/j.artint.2021.103562
摘要

In recent years, multi-agent epistemic planning has received attention from both dynamic logic and planning communities. Existing implementations of multi-agent epistemic planning are based on compilation into classical planning and suffer from various limitations, such as generating only linear plans, restriction to public actions, and incapability to handle disjunctive beliefs. In this paper, we consider centralized multi-agent epistemic planning from the viewpoint of a third person who coordinates all the agents to achieve the goal. We treat contingent planning, resulting in nonlinear plans. We model private actions and hence handle beliefs, formalized with the multi-agent KD45 logic. We handle static propositional common knowledge, which we call constraints. For such planning settings, we propose a general representation framework where the initial knowledge base (KB) and the goal, the preconditions and effects of actions can be arbitrary KD45n formulas, and the solution is an action tree branching on sensing results. In this framework, the progression of KBs w.r.t. actions is achieved through the operation of belief revision or update on KD45n formulas, that is, higher-order belief revision or update. To support efficient reasoning and progression, we make use of a normal form for KD45n called alternating cover disjunctive formulas (ACDFs). We propose reasoning, revision and update algorithms for ACDFs. Based on these algorithms, adapting the PrAO algorithm for contingent planning from the literature, we implemented a multi-agent epistemic planner called MEPK. Our experimental results show the viability of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小申完成签到,获得积分10
刚刚
刚刚
海豚发布了新的文献求助10
刚刚
刚刚
汉堡包应助WANG.采纳,获得10
1秒前
dk完成签到,获得积分20
1秒前
1秒前
Wjh完成签到,获得积分10
2秒前
wanci应助随想采纳,获得10
2秒前
久桃完成签到,获得积分10
2秒前
星际帅帅完成签到,获得积分10
2秒前
山西球迷发布了新的文献求助10
2秒前
甜甜弘文发布了新的文献求助10
3秒前
3秒前
xixi发布了新的文献求助10
3秒前
4秒前
Lv发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Owen应助菠萝李采纳,获得10
5秒前
5秒前
俞跃完成签到,获得积分10
5秒前
知不知发布了新的文献求助10
5秒前
natmed应助milka采纳,获得20
5秒前
黄义发布了新的文献求助10
5秒前
xu完成签到,获得积分10
6秒前
Inory007完成签到,获得积分10
6秒前
tianmafei发布了新的文献求助10
6秒前
7秒前
7秒前
Owen应助盛欢采纳,获得10
8秒前
Nano完成签到,获得积分10
8秒前
9秒前
SciGPT应助速速來電采纳,获得10
9秒前
新乔完成签到,获得积分10
9秒前
旺旺碎冰冰完成签到,获得积分10
9秒前
黄嘉慧完成签到 ,获得积分10
9秒前
甜甜弘文完成签到,获得积分20
10秒前
寒冷的沛珊完成签到,获得积分10
10秒前
俏皮麦片完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483374
求助须知:如何正确求助?哪些是违规求助? 4584081
关于积分的说明 14394500
捐赠科研通 4513704
什么是DOI,文献DOI怎么找? 2473645
邀请新用户注册赠送积分活动 1459635
关于科研通互助平台的介绍 1433108