Automated abstraction of real-world clinical outcome in lung cancer: A natural language processing and artificial intelligence approach from electronic health records.

人工智能 医学 自然语言处理 计算机科学 肺癌 机器学习 病理
作者
Meng Ma,Arielle Redfern,Xiang Zhou,Dan Li,Ru Ying,Kyeryoung Lee,Christopher Gilman,Zongzhi Liu,Scott Jones,Yun Mai,Matthew Deitz,Yunrou Gong,Tommy Mullaney,Tony Prentice,Rong Chen,Eric E. Schadt,Xiaoyan Wang
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:38 (15_suppl): e14062-e14062
标识
DOI:10.1200/jco.2020.38.15_suppl.e14062
摘要

e14062 Background: Real world evidence generated from electronic health records (EHRs) is playing an increasing role in health care decisions. It has been recognized as an essential element to assess cancer outcomes in real-world settings. Automatically abstracting outcomes from notes is becoming a fundamental challenge in medical informatics. In this study, we aim to develop a system to automatically abstract outcomes (Progression, Response, Stable Disease) from notes in lung cancer. Methods: A lung cancer cohort (n = 5,003) was obtained from the Mount Sinai Data Warehouse. The progress, pathology and radiology notes of patients were used. We integrated various techniques of Natural Language Processing (NLP) and Artificial Intelligence (AI) and developed a system to automatically abstract outcomes. The corresponding images, biopsies and lines of treatments (LOTs) were abstracted as attributes of outcomes. This system includes four information models: 1. Customized NLP annotator model: preprocessor, section detector, sentence splitter, named entity recognition, relation detector; CRF and LSTM methods were applied to recognize entities and relations. 2. Clinical Outcome container model: biopsy evidence extractor, lines of treatment detector, image evidence extractor, clinical outcome event recognizer, date detector, and temporal reasoning; Domain-specific rules were crafted to automatically infer outcomes. 3. Document Summarizer; 4. Longitudinal Outcome Summarizer. Results: To evaluate the outcomes abstracted, we curated a subset (n = 792) from patient cohort for which LOTs were available. About 61% of the outcomes identified were supported by radiologic images (time window = ±14 days) or biopsy pathology results (time window = ±100 days). In 91% (720/792) of patients, Progression was abstracted within a time window of 90 days prior to first-line treatment. Also, 72% of the Progression events identified were accompanied by a downstream event (e.g., treatment change or death). We randomly selected 250 outcomes for manual curation, and 197 outcomes were assessed to be correct (precision = 79%). Moreover, our automated abstraction system improved human abstractor efficiency to curate outcomes, reducing curation time per patient by 90%. Conclusions: We have demonstrated the feasibility and effectiveness of NLP and AI approaches to abstract outcomes from lung cancer EHR data. It promises to automatically abstract outcomes and other clinical entities from notes across all cancers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助甜美怜蕾采纳,获得10
刚刚
1秒前
毛爱民发布了新的文献求助10
1秒前
Ashy完成签到 ,获得积分10
2秒前
晖晖shining完成签到 ,获得积分10
3秒前
科研通AI5应助搁浅采纳,获得10
4秒前
7秒前
我有魔鬼大头完成签到,获得积分10
12秒前
add5a2完成签到 ,获得积分10
13秒前
13秒前
14秒前
15秒前
科研通AI5应助ZHI采纳,获得10
15秒前
润润润完成签到 ,获得积分10
17秒前
nansn发布了新的文献求助10
18秒前
搁浅发布了新的文献求助10
19秒前
19秒前
快嘎了黑土豆完成签到,获得积分10
24秒前
星辰大海应助缓慢平蓝采纳,获得10
24秒前
蓝昕完成签到,获得积分10
25秒前
搁浅完成签到,获得积分20
25秒前
yangyang发布了新的文献求助10
31秒前
Catherine完成签到,获得积分10
31秒前
32秒前
FashionBoy应助YY采纳,获得10
33秒前
33秒前
35秒前
瓜尔佳发布了新的文献求助10
37秒前
38秒前
13333完成签到 ,获得积分10
38秒前
HeWang完成签到,获得积分20
39秒前
甜美怜蕾发布了新的文献求助10
42秒前
Nora完成签到,获得积分20
42秒前
Honnan完成签到,获得积分10
43秒前
冠状完成签到,获得积分10
43秒前
LYY完成签到 ,获得积分10
43秒前
44秒前
45秒前
47秒前
iNk应助木棉采纳,获得20
47秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677478
求助须知:如何正确求助?哪些是违规求助? 3231225
关于积分的说明 9795131
捐赠科研通 2942380
什么是DOI,文献DOI怎么找? 1613106
邀请新用户注册赠送积分活动 761431
科研通“疑难数据库(出版商)”最低求助积分说明 736862