Critiquing Protein Family Classification Models Using Sufficient Input Subsets

可解释性 计算机科学 机器学习 人工智能 集合(抽象数据类型) 任务(项目管理) 一套 序列(生物学) 初始化 深度学习 人工神经网络 生物 历史 遗传学 经济 考古 管理 程序设计语言
作者
Brandon Michael Carter,Max Bileschi,Jamie Smith,Theo Sanderson,Drew Bryant,David Belanger,Lucy J. Colwell
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:27 (8): 1219-1231 被引量:3
标识
DOI:10.1089/cmb.2019.0339
摘要

In many application domains, neural networks are highly accurate and have been deployed at large scale. However, users often do not have good tools for understanding how these models arrive at their predictions. This has hindered adoption in fields such as the life and medical sciences, where researchers require that models base their decisions on underlying biological phenomena rather than peculiarities of the dataset. We propose a set of methods for critiquing deep learning models and demonstrate their application for protein family classification, a task for which high-accuracy models have considerable potential impact. Our methods extend the Sufficient Input Subsets (SIS) technique, which we use to identify subsets of features in each protein sequence that are alone sufficient for classification. Our suite of tools analyzes these subsets to shed light on the decision-making criteria employed by models trained on this task. These tools show that while deep models may perform classification for biologically relevant reasons, their behavior varies considerably across the choice of network architecture and parameter initialization. While the techniques that we develop are specific to the protein sequence classification task, the approach taken generalizes to a broad set of scientific contexts in which model interpretability is essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
科研通AI6应助巨大的小侠采纳,获得10
2秒前
烟花应助甜甜如之采纳,获得10
2秒前
缥缈橘子完成签到,获得积分10
2秒前
3秒前
汉堡包应助明帅采纳,获得10
3秒前
Jimmy发布了新的文献求助10
3秒前
科研通AI6应助兴兴采纳,获得10
3秒前
桐桐应助李金玉采纳,获得10
3秒前
黑米粥发布了新的文献求助10
3秒前
橙鲸鱼完成签到,获得积分10
4秒前
大方万仇发布了新的文献求助10
4秒前
Ulrica发布了新的文献求助30
6秒前
sunny发布了新的文献求助10
6秒前
嘀嘀嘀完成签到,获得积分10
6秒前
小刘医生发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
lxr完成签到 ,获得积分10
9秒前
9秒前
打打应助赵浩楠采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
xiaoming完成签到 ,获得积分10
11秒前
12秒前
UMA发布了新的文献求助10
12秒前
红红酱发布了新的文献求助10
12秒前
Imomo发布了新的文献求助50
13秒前
高兴便当发布了新的文献求助10
13秒前
小白完成签到 ,获得积分10
15秒前
明帅发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091