Critiquing Protein Family Classification Models Using Sufficient Input Subsets

可解释性 计算机科学 机器学习 人工智能 集合(抽象数据类型) 任务(项目管理) 一套 序列(生物学) 初始化 深度学习 人工神经网络 生物 历史 遗传学 经济 考古 管理 程序设计语言
作者
Brandon Michael Carter,Max Bileschi,Jamie Smith,Theo Sanderson,Drew Bryant,David Belanger,Lucy J. Colwell
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:27 (8): 1219-1231 被引量:3
标识
DOI:10.1089/cmb.2019.0339
摘要

In many application domains, neural networks are highly accurate and have been deployed at large scale. However, users often do not have good tools for understanding how these models arrive at their predictions. This has hindered adoption in fields such as the life and medical sciences, where researchers require that models base their decisions on underlying biological phenomena rather than peculiarities of the dataset. We propose a set of methods for critiquing deep learning models and demonstrate their application for protein family classification, a task for which high-accuracy models have considerable potential impact. Our methods extend the Sufficient Input Subsets (SIS) technique, which we use to identify subsets of features in each protein sequence that are alone sufficient for classification. Our suite of tools analyzes these subsets to shed light on the decision-making criteria employed by models trained on this task. These tools show that while deep models may perform classification for biologically relevant reasons, their behavior varies considerably across the choice of network architecture and parameter initialization. While the techniques that we develop are specific to the protein sequence classification task, the approach taken generalizes to a broad set of scientific contexts in which model interpretability is essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wwr完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
Owen应助GGGG采纳,获得10
3秒前
kjkj完成签到,获得积分10
4秒前
4秒前
风清扬发布了新的文献求助10
4秒前
睿诺应助彬彬采纳,获得30
4秒前
Albert完成签到,获得积分10
5秒前
我是老大应助saluo采纳,获得10
5秒前
等风的人发布了新的文献求助10
5秒前
鹏鹏发布了新的文献求助10
5秒前
6秒前
XLH发布了新的文献求助10
6秒前
星辰大海应助cis2014采纳,获得10
6秒前
twc发布了新的文献求助30
6秒前
ZCY发布了新的文献求助10
7秒前
卢立欣发布了新的文献求助10
7秒前
8秒前
好运来应助嘻嘻嘻采纳,获得10
8秒前
Owen应助嘻嘻嘻采纳,获得10
8秒前
pluto应助扭扭车采纳,获得10
9秒前
9秒前
pluto应助扭扭车采纳,获得10
9秒前
pluto应助扭扭车采纳,获得10
9秒前
研友_yLpQrn完成签到,获得积分10
11秒前
kai完成签到,获得积分10
12秒前
不吃香菇完成签到,获得积分20
12秒前
breaddog发布了新的文献求助10
12秒前
今后应助羊皮大哈采纳,获得10
14秒前
15秒前
ZCY完成签到,获得积分10
15秒前
SciGPT应助我在认真做科研采纳,获得10
15秒前
twc完成签到,获得积分10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288