Critiquing Protein Family Classification Models Using Sufficient Input Subsets

可解释性 计算机科学 机器学习 人工智能 集合(抽象数据类型) 任务(项目管理) 一套 序列(生物学) 初始化 深度学习 人工神经网络 生物 历史 遗传学 经济 考古 管理 程序设计语言
作者
Brandon Michael Carter,Max Bileschi,Jamie Smith,Theo Sanderson,Drew Bryant,David Belanger,Lucy J. Colwell
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:27 (8): 1219-1231 被引量:3
标识
DOI:10.1089/cmb.2019.0339
摘要

In many application domains, neural networks are highly accurate and have been deployed at large scale. However, users often do not have good tools for understanding how these models arrive at their predictions. This has hindered adoption in fields such as the life and medical sciences, where researchers require that models base their decisions on underlying biological phenomena rather than peculiarities of the dataset. We propose a set of methods for critiquing deep learning models and demonstrate their application for protein family classification, a task for which high-accuracy models have considerable potential impact. Our methods extend the Sufficient Input Subsets (SIS) technique, which we use to identify subsets of features in each protein sequence that are alone sufficient for classification. Our suite of tools analyzes these subsets to shed light on the decision-making criteria employed by models trained on this task. These tools show that while deep models may perform classification for biologically relevant reasons, their behavior varies considerably across the choice of network architecture and parameter initialization. While the techniques that we develop are specific to the protein sequence classification task, the approach taken generalizes to a broad set of scientific contexts in which model interpretability is essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仿生人发布了新的文献求助10
刚刚
汉堡包应助刻苦小鸭子采纳,获得10
刚刚
1秒前
zhuo发布了新的文献求助10
1秒前
1秒前
1秒前
炒栗子发布了新的文献求助10
1秒前
诚心的绿茶完成签到,获得积分10
1秒前
2秒前
swtdna完成签到,获得积分10
2秒前
zzz完成签到,获得积分10
2秒前
天天快乐应助zhaoyuwei采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
乐乐应助某某采纳,获得10
4秒前
4秒前
阿简发布了新的文献求助10
5秒前
JQB完成签到,获得积分10
5秒前
5秒前
enen完成签到,获得积分10
5秒前
5秒前
浮游应助安谢采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
积极夜安完成签到,获得积分20
7秒前
叶伟帮发布了新的文献求助30
7秒前
7秒前
8秒前
Arther发布了新的文献求助10
8秒前
小吴完成签到,获得积分10
8秒前
8秒前
大模型应助苹果初阳采纳,获得10
8秒前
尊敬乐蕊完成签到,获得积分10
9秒前
张兰兰发布了新的文献求助10
9秒前
huaming发布了新的文献求助10
9秒前
田様应助炒栗子采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381