Critiquing Protein Family Classification Models Using Sufficient Input Subsets

可解释性 计算机科学 机器学习 人工智能 集合(抽象数据类型) 任务(项目管理) 一套 序列(生物学) 初始化 深度学习 人工神经网络 生物 历史 遗传学 经济 考古 管理 程序设计语言
作者
Brandon Michael Carter,Max Bileschi,Jamie Smith,Theo Sanderson,Drew Bryant,David Belanger,Lucy J. Colwell
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:27 (8): 1219-1231 被引量:3
标识
DOI:10.1089/cmb.2019.0339
摘要

In many application domains, neural networks are highly accurate and have been deployed at large scale. However, users often do not have good tools for understanding how these models arrive at their predictions. This has hindered adoption in fields such as the life and medical sciences, where researchers require that models base their decisions on underlying biological phenomena rather than peculiarities of the dataset. We propose a set of methods for critiquing deep learning models and demonstrate their application for protein family classification, a task for which high-accuracy models have considerable potential impact. Our methods extend the Sufficient Input Subsets (SIS) technique, which we use to identify subsets of features in each protein sequence that are alone sufficient for classification. Our suite of tools analyzes these subsets to shed light on the decision-making criteria employed by models trained on this task. These tools show that while deep models may perform classification for biologically relevant reasons, their behavior varies considerably across the choice of network architecture and parameter initialization. While the techniques that we develop are specific to the protein sequence classification task, the approach taken generalizes to a broad set of scientific contexts in which model interpretability is essential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
香蕉觅云应助zfzf0422采纳,获得10
2秒前
3秒前
3秒前
李健应助爱听歌的向日葵采纳,获得10
4秒前
今后应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得80
4秒前
所所应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得30
5秒前
婷婷发布了新的文献求助10
5秒前
zzt完成签到,获得积分10
7秒前
张小汉发布了新的文献求助30
8秒前
二十四发布了新的文献求助10
8秒前
赘婿应助junzilan采纳,获得10
8秒前
FashionBoy应助勤恳的雨文采纳,获得10
8秒前
aaa完成签到,获得积分10
9秒前
10秒前
11111完成签到,获得积分20
11秒前
仔wang完成签到,获得积分10
11秒前
13秒前
忘羡222发布了新的文献求助20
13秒前
13秒前
温暖涫完成签到,获得积分10
15秒前
11111发布了新的文献求助10
15秒前
健忘的牛排完成签到,获得积分10
16秒前
wmmm完成签到,获得积分10
16秒前
Akim应助爱吃泡芙采纳,获得10
16秒前
老迟到的书雁完成签到 ,获得积分10
16秒前
16秒前
正经俠发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824