Multiple-Image Deep Learning Analysis for Neuropathy Detection in Corneal Nerve Images

神经丛 卷积神经网络 人工智能 计算机科学 角膜 共焦显微镜 模式识别(心理学) 医学 共焦 曲折 特征提取 计算机视觉 眼科 病理 数学 工程类 几何学 细胞生物学 岩土工程 生物 多孔性
作者
Fábio Scarpa,Alessia Colonna,Alfredo Ruggeri
出处
期刊:Cornea [Ovid Technologies (Wolters Kluwer)]
卷期号:39 (3): 342-347 被引量:29
标识
DOI:10.1097/ico.0000000000002181
摘要

Purpose: Automated classification of corneal confocal images from healthy subjects and diabetic subjects with neuropathy. Methods: Over the years, in vivo confocal microscopy has established itself as a rapid and noninvasive method for clinical assessment of the cornea. In particular, images of the subbasal nerve plexus are useful to detect pathological conditions. Currently, clinical information is derived through a manual or semiautomated process that traces corneal nerves and achieves their descriptors (eg, density and tortuosity). This is tedious and subjective. To overcome this limitation, a method based on a convolutional neural network (CNN) for the classification of images from healthy subjects and diabetic subjects with neuropathy is proposed. The CNN simultaneously analyzes 3 nonoverlapping images, from the central region of the cornea. The algorithm automatically extracts features, without the need for neither nerve tracing nor parameter extraction nor montage/mosaicking, and provides an overall classification for each image trio. Results: On a dataset composed by images from 50 healthy subjects and 50 subjects with neuropathy, the algorithm achieves a classification accuracy of 96%. The proposed method improves the results obtained using a traditional method that traces nerves and evaluates their density and tortuosity. Conclusions: The proposed method provides a completely automated analysis of corneal confocal images. Results demonstrate the potentiality of the CNN in identifying clinically useful features for corneal nerves by analysis of multiple images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
1秒前
悦耳如彤应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得30
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Lucas应助科研通管家采纳,获得20
1秒前
wanci应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
淡定秀发完成签到,获得积分10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
糖糖发布了新的文献求助10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
hh完成签到,获得积分10
2秒前
平旺完成签到,获得积分10
3秒前
4秒前
黄梦娇完成签到,获得积分10
4秒前
严俊东发布了新的文献求助10
4秒前
生命科学的第一推动力完成签到 ,获得积分10
4秒前
5秒前
李沐唅发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助芝士采纳,获得10
7秒前
小青龙完成签到,获得积分10
7秒前
小A同学发布了新的文献求助10
7秒前
刘鑫发布了新的文献求助10
8秒前
科研通AI5应助鲜艳的三毒采纳,获得10
8秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213290
求助须知:如何正确求助?哪些是违规求助? 4389206
关于积分的说明 13666238
捐赠科研通 4250143
什么是DOI,文献DOI怎么找? 2331945
邀请新用户注册赠送积分活动 1329645
关于科研通互助平台的介绍 1283189