Multiple-Image Deep Learning Analysis for Neuropathy Detection in Corneal Nerve Images

神经丛 卷积神经网络 人工智能 计算机科学 角膜 共焦显微镜 模式识别(心理学) 医学 共焦 曲折 特征提取 计算机视觉 眼科 病理 数学 工程类 几何学 细胞生物学 岩土工程 生物 多孔性
作者
Fábio Scarpa,Alessia Colonna,Alfredo Ruggeri
出处
期刊:Cornea [Lippincott Williams & Wilkins]
卷期号:39 (3): 342-347 被引量:29
标识
DOI:10.1097/ico.0000000000002181
摘要

Purpose: Automated classification of corneal confocal images from healthy subjects and diabetic subjects with neuropathy. Methods: Over the years, in vivo confocal microscopy has established itself as a rapid and noninvasive method for clinical assessment of the cornea. In particular, images of the subbasal nerve plexus are useful to detect pathological conditions. Currently, clinical information is derived through a manual or semiautomated process that traces corneal nerves and achieves their descriptors (eg, density and tortuosity). This is tedious and subjective. To overcome this limitation, a method based on a convolutional neural network (CNN) for the classification of images from healthy subjects and diabetic subjects with neuropathy is proposed. The CNN simultaneously analyzes 3 nonoverlapping images, from the central region of the cornea. The algorithm automatically extracts features, without the need for neither nerve tracing nor parameter extraction nor montage/mosaicking, and provides an overall classification for each image trio. Results: On a dataset composed by images from 50 healthy subjects and 50 subjects with neuropathy, the algorithm achieves a classification accuracy of 96%. The proposed method improves the results obtained using a traditional method that traces nerves and evaluates their density and tortuosity. Conclusions: The proposed method provides a completely automated analysis of corneal confocal images. Results demonstrate the potentiality of the CNN in identifying clinically useful features for corneal nerves by analysis of multiple images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PPPPPP关注了科研通微信公众号
1秒前
初染完成签到,获得积分10
1秒前
1秒前
1秒前
打打应助jzyy采纳,获得10
1秒前
1秒前
zcb完成签到,获得积分10
2秒前
yiding完成签到 ,获得积分10
2秒前
Kiki发布了新的文献求助10
3秒前
Akim应助fxy采纳,获得10
3秒前
CodeCraft应助甜甜醉波采纳,获得10
3秒前
香菜发布了新的文献求助10
3秒前
bkagyin应助penghuiye采纳,获得10
3秒前
负责莆完成签到,获得积分20
3秒前
3秒前
zjkzh完成签到,获得积分10
4秒前
4秒前
4秒前
kakin完成签到,获得积分10
4秒前
传奇3应助swh采纳,获得10
4秒前
唐同学完成签到,获得积分10
4秒前
马慧敏完成签到,获得积分10
4秒前
田様应助Carlo采纳,获得10
4秒前
魈maker发布了新的文献求助10
5秒前
天真书南发布了新的文献求助10
5秒前
5秒前
zcb发布了新的文献求助10
5秒前
优雅的WAN完成签到 ,获得积分10
5秒前
Dding发布了新的文献求助20
5秒前
6秒前
麻辣牛肉完成签到,获得积分10
6秒前
田様应助荀沛珊采纳,获得10
7秒前
活泼的雪旋完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
白衣发布了新的文献求助10
8秒前
善学以致用应助香菜采纳,获得10
8秒前
略略略应助亭子采纳,获得10
8秒前
隐形曼青应助生椰拿铁采纳,获得10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958693
求助须知:如何正确求助?哪些是违规求助? 3504939
关于积分的说明 11121216
捐赠科研通 3236311
什么是DOI,文献DOI怎么找? 1788726
邀请新用户注册赠送积分活动 871307
科研通“疑难数据库(出版商)”最低求助积分说明 802691